**Course Information:**

Copy and paste current course information from Class Search/Course Catalog.

<table>
<thead>
<tr>
<th>Academic Unit</th>
<th>College of Liberal Arts and Sciences</th>
<th>Department</th>
<th>School of Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>BIO</td>
<td>Number</td>
<td>151</td>
</tr>
<tr>
<td>Is this a cross-listed course?</td>
<td>No</td>
<td>If yes, please identify course(s)</td>
<td></td>
</tr>
<tr>
<td>Is this a shared course?</td>
<td>No</td>
<td>If so, list all academic units offering this course</td>
<td></td>
</tr>
<tr>
<td>Course description:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Requested designation:** Natural Sciences-SQ

*Note: a separate proposal is required for each designation requested*

**Eligibility:**

Permanent numbered courses must have completed the university’s review and approval process.

For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu.

**Submission deadlines dates are as follow:**

For Fall 2015 Effective Date: October 9, 2014
For Spring 2016 Effective Date: March 19, 2015

**Area(s) proposed course will serve:**

A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

**Checklists for general studies designations:**

Complete and attach the appropriate checklist

- [ ] Literacy and Critical Inquiry core courses (L)
- [ ] Mathematics core courses (MA)
- [ ] Computer/statistics/quantitative applications core courses (CS)
- [ ] Humanities, Arts and Design core courses (HU)
- [ ] Social-Behavioral Sciences core courses (SB)
- [ ] Natural Sciences core courses (NS/SG)
- [ ] Cultural Diversity in the United States courses (C)
- [ ] Global Awareness courses (G)
- [ ] Historical Awareness courses (H)

**A complete proposal should include:**

- [ ] Signed General Studies Program Course Proposal Cover Form
- [ ] Criteria Checklist for the area
- [ ] Course Catalog description
- [ ] Course Syllabus
- [ ] Copy of Table of Contents from the textbook and list of required readings/books

Respectfully request that proposals are submitted electronically with all files compiled into one PDF. If necessary, a hard copy of the proposal will be accepted.

**Contact Information:**

Name: Scot Schoenborn  Phone: 5-3721

Mail code: ___________________________  E-mail: scot.schoenborn@asu.edu

**Department Chair/Director approval:** (Required)

Chair/Director name (Typed): Mike Angilletta  Date: 10/31/14

Chair/Director (Signature): ___________________________

Rev. 1/94, 4/95, 7/96, 4/00, 1/02, 10/08, 11/11/ 12/11, 7/12, 5/14
Rationale and Objectives

Public scientific literacy, critical for sound decisions on scientifically infused issues such as climate change, includes understanding of basic science concepts, such as the fundamental behavior of matter and energy. It also includes the understanding that “science” is not an encyclopedic collection of facts. Rather, it is a process of exploration that embraces curiosity, inquiry, testing, and communication, to reduce uncertainty about nature. Absent understanding of scientific concepts and of the nature of science, science and pseudoscience are difficult to distinguish, and normal scientific disagreements may be misinterpreted as ideological or political disputes. The goal of the natural sciences (SQ/SG) requirement, including the laboratory requirement, is to instill understanding of basic science content and of the nature of science in every ASU graduate.

10/1989
Proposer: Please complete the following sections and attach appropriate documentation.

# ASU--[SQ] CRITERIA

## I. - FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>A.</strong> Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>B.</strong> Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>C.</strong> Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>D.</strong> Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>E.</strong> Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>F.</strong> Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>G.</strong> Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>H.</strong> Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

## II. - AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>A.</strong> Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>B.</strong> Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>C.</strong> Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>
### III. [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>B. Includes a college-level treatment of some of the following topics (check all that apply below):</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>a. Atomic and molecular structure</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>b. Electrical processes</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>c. Chemical processes</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>d. Elementary thermodynamics</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>e. Electromagnetics</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>f. Dynamics and mechanics</td>
</tr>
</tbody>
</table>

**[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:**

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

# ASU--[SG] CRITERIA

## I. - FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Includes <strong>weekly</strong> laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## II. - AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td></td>
<td>Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td>Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td></td>
<td>Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
<tr>
<td>Requirements</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Presenting a qualitative survey of a discipline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focusing on the impact of science on social, economic or environmental issues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Prefix</td>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BIO</td>
<td>151</td>
<td>Biological Thinking</td>
</tr>
</tbody>
</table>

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQB</td>
<td>Each section of the course covers the nature, process, and context of science.</td>
<td>Learning Objective from the Science and Reason section: Process of science - Identify, describe, and apply the scientific method, including basic techniques such as the use of controls</td>
</tr>
<tr>
<td>SQE</td>
<td>Where applicable, calculations are performed to illustrate biological concepts as they relate to probability and statistics.</td>
<td>Learning Objective from Genetics Module: - Calculate probabilities and make a prediction of probabilities of contingent and alternative outcomes</td>
</tr>
<tr>
<td>SQA</td>
<td>While focused in Biology, this course is grounded in the basic concepts of science and addresses biological concept through this lens.</td>
<td>Module: 1: Science and Reason covers the process in detail.</td>
</tr>
<tr>
<td>SQF</td>
<td>BIO 151 includes a weekly lab section that impacts a student's final grade.</td>
<td>From the syllabus: The Biology 100 Laboratory The laboratory is a critical part of BIO100. These are not cookbook exercises in which you are told to this, then that, and then that. Instead, you will be doing science in the lab, trying to solve problems, and formulate and test hypotheses scientifically with hands-on materials.</td>
</tr>
<tr>
<td>SQC</td>
<td>Biology is a multidisciplinary approach to science and covers many different areas. This course covers methods for each area</td>
<td>Topical areas covered in class with focus on the process/context of science: Biological Diversity, Ecology, Evolution, Genetics, Cells, &amp; Molecular Biology.</td>
</tr>
<tr>
<td>SQG</td>
<td>The Lab is a graded part of the course.</td>
<td>From the Syllabus: You will be doing science in the lab, trying to solve problems, and formulate and test hypotheses scientifically with hands-on materials. The points you earn in lab are based on a mix of quizzes, homework, and a project assignment. Your lab teaching assistant (TA) will explain the details when you meet in lab. Because of the importance of the lab physical experience, you must attend all laboratory meetings.</td>
</tr>
</tbody>
</table>
| SQD | Course emphasizes the role of finding new knowledge and how current knowledge is subject to change. | Learning Objective from the Science and Reason module under "Process of Science":
- Recognize the role of uncertainty as a necessary feature of the nature of science |
| SQH | This is an intro level course for students interested in Biology | From the course description: The course uses an active learning approach to engage students in developing their scientific reasoning abilities and in grasping the fundamental concepts of major areas of biology. A hands-on laboratory provides opportunity for students to pursue open-ended investigations that build their mastery of content knowledge, scientific methodology, and data interpretation. |
| SQIIIA | Touched on in several topical areas of the course | From Respiration and Photosynthesis
Science Content
- Recognize various forms of energy in the physical world
- Perform an energy balance of an organism.
- Recognize the definition of Calorie
- Relate the physical rules of energy balance to the biological problem of weight gain / loss via diet and exercise.
- Recognize and apply the Laws of Thermodynamics in biological situations.
- Explain and delineate the process of aerobic respiration, accounting for the molecules involved, including those consumed and produced.
- Explain how aerobic respiration releases energy from sugars while capturing it in useful form.
- Explain and delineate the process of photosynthesis, accounting for the molecules involved, including those consumed and produced. |
| SQIIIacd | Two sections of molecular biology and a section on respiration and photosynthesis. | Molecular Biology 1 (What are genes made of?)
Science Content
- Evaluate various lines of evidence to determine whether DNA or protein is the molecule of inheritance.
- Use evidence to explain the structure of DNA.
- Understand how the structure of DNA lends itself to replication. |
| -Understand how chromosomes, genes, alleles and DNA relate to one another.  
Molecular Biology 2 (How do genes work?)  
Science Content  
-Describe the central 'dogma' of molecular biology.  
-List the differences between RNA and DNA.  
-Understand the structure and functions of proteins.  
-Describe and accurately demonstrate the processes of transcription and translation  
-Predict the effects of mutations on an amino acid sequence.  
-Describe how DNA, genes, alleles and mutations relate to evolution by natural selection.  
-Delineate the similarities and differences between proteins and nucleic acids  
Respiration and Photosynthesis:  
Science Content  
-Recognize various forms of energy in the physical world  
-Perform an energy balance of an organism.  
-Recognize the definition of Calorie  
-Relate the physical rules of energy balance to the biological problem of weight gain / loss via diet and exercise.  
-Recognize and apply the Laws of Thermodynamics in biological situations. |
Course description

The course uses an active learning approach to engage students in developing their scientific reasoning abilities and in grasping the fundamental concepts of major areas of biology. A hands-on laboratory provides opportunity for students to pursue open-ended investigations that build their mastery of content knowledge, scientific methodology, and data interpretation.

Student Learning Outcomes

Upon successful completion of this course,

- Students will understand the fundamental assumptions of science and be able to recognize and apply the primary components of scientific methodology.
- Students will be conversant in the major foundational concepts across key domains of biology and in their historical underpinnings.
- Students will appreciate the significance of biological understanding for a variety of areas important for human welfare, including medicine and the environment.
BIO151: Biological Thinking
A course about the science behind the science of life.

Instructor: James Elser
Lead TAs: Amanda Suchy and Liz Barnes
Fall 2014

BIO151 Course Contract READ ME!

Your instructor, teaching assistants, and other support staff will be available to answer any questions you have about the course. We are ready and eager to help. Our office hours and contact info are listed on the class Blackboard site. As far as we are concerned, there is no such thing as a stupid question. Don't let things slide. Ask for assistance if you need it. We really want you to succeed!

We pledge to come to class on time, to finish on time, to provide as good a learning experience as we are able, and to treat you with respect for whatever concerns you might have. In return, we ask that you respect your fellow students and us by observing proper in-class etiquette, including the following basic rules:

- Once a week we will have an "opening session" when we discuss the past week's work, set up the coming week, and, generally, have a visitor. During these sessions please do not use laptop computers, tablets, and such unless otherwise instructed. On active learning days, laptops and tablets can be used but must only be used in support of the day's activity. Thanks!
- Cell phones should be OFF during all class periods*. Gracias!
- No food in the classroom. And no drinks near the computers. Arigato!
- Please use courtesy in carrying on conversations - during active learning activities there will usually be a lot of discussion but there will be times when everyone needs to be listening. Xie xie!
- Please do NOT come late to class or leave early from them (bathroom emergencies excepted). If you do this for an active learning meeting (generally Wed and Fri), you will not receive credit for it. Coming late for Monday classes will probably lead you to miss the quiz. Danke!

*You are exempt from this if you are member of the US Secret Service, CIA, FBI, British MI-5, or other high security organization needing high-level communication with the outside world at all times. But we'll need documentation!

By enrolling in this class, you are agreeing to honor these requests.

Required Materials

You are required to purchase (in reality, "rent" since you can turn it back in when you're done) a Turning Point (TP) transceiver ("clicker"), available at the ASU bookstore. NOTE: if you are using this system in other classes, you need get only one; it will work for all your classes. For any problems with TP clicker malfunctions, please contact clickers.asu.edu. NOTE: We do not allow use Response-ware compatible devices because this makes it impossible to ensure that students are not unfairly accessing additional information during quizzes.

Students with Disabilities

We strive to make BIO151 accessible to all students at Arizona State University. However, in order for us to make accommodations for a student with a disability, that student must a) be registered with the Disability Resource Center (DRC) office, and b) must talk to us about the accommodations they need. If you are registered with DRC, please contact us as soon as possible so that we can make a plan of action.

Grade Breakdown

As the semester starts, you have 1000 points and an A. Congratulations! Don't lose them!

Points distribution
- Weekly quizzes: 30% (300 points out of 1000)
- Lab: 30% (300 points)
- In-class activities and preparation: 15% (150 points)
- Mid-term Exam: 12.5% (125 points) Exam date: 10 October (re-take: 17 October)
- Final Exam: 12.5% (125 points) Exam date: 10 December at 9:50 - 11:40.

August 19, 2014
At the end of the semester, students with 900 points or more will receive an A; 800–899 = B; 700–799 = C; 600–699 = D; fewer than 600 points = E. Note that 250 of these points are earned in lab. We do NOT use the +/- grading system in BIO151.

Weekly quizzes: There will be regular weekly quizzes on the first class day of each week (generally on Mondays but see class schedule at the end of this document). Each quiz involves five questions and deals with the preceding week’s materials. Because you are not interested in memorization, you can bring one 3 x 5” index card of notes to the quiz (Yes both sides!). You will be able to drop your three lowest quiz scores; there are no "make-up" quizzes (but see Mastery information that follows).

IMPORTANT! You will have the chance to master the material and re-take the quiz within a specified period (about 1 week) to better demonstrate your mastery of the material. This will involve re-reading the assigned materials, re-viewing the mini-lecture videos, and completing some additional practice. Once you complete those mastery tasks, you will be able to re-take a new version of the quiz. If you scored a 4 of 5 on the first attempt, we will take the AVERAGE of your two scores (so BEWARE retaking if you score 4, no?) If you scored 3 of 5 or lower on the first attempt, we will take the HIGHER of the two scores. Yes, you can use a 3 x 5” card for the re-take too. Details of how and where to do the quiz re-take will be provided in class.

NOTE: you cannot take the Mastery quiz if you miss the regular quiz due to unexcused absence.

Your quiz point total will be based on the % of correct answers you get across all the quizzes you took, after dropping the three lowest scores.

In-class activities and preparation: For each week's Module there will be a series of assigned videos to watch and readings to complete by a given day and time. This will be tracked on line. The percentage of these you complete on time will be used in calculating your "preparation" grade. Note that you should always complete these assignments anyway, even if you happen to be unable to meet the specific deadline for a given component.

Each week (generally on Monday), we will have a visitor, either in person or by Skype. These will be really interesting and important people who are scientists and biologists and doing cool stuff that you will want to know about. Each week a set of students will be assigned to do a little research on the visitor and prepare a question to ask him/her. These will serve as "conversation starters" during the Monday visits. Completing this will be part of your participation grade.

Each week (generally on Wednesday and Friday) we will have in-class exercises and activities that will help you learn the material. Your "in-class activities" grade will be based on the percentage of these sessions that you satisfactorily engaged, as judged by your instructor and TAs who are involved in that session. Details about this will be explained in class. One way to be sure to be marked "unsatisfactory" is to arrive late, leave early, mess around, randomly surf the Internet, or otherwise fail to participate fully in the learning activity.

To get participation credit for Active Learning Activities, you must:
1) Be present for the full class period and check in with your clicker when the instructor asks
2) Be actively engaged in the activity during class
3) Turn in necessary documents for each activity

There is also the opportunity to earn "extra credit" during the Active Learning Activities. If your group does an exceptional job on the activity you turn in, you will receive one extra credit point for that activity.

<table>
<thead>
<tr>
<th>Points Allocated</th>
<th>Present for full class period?</th>
<th>Engaged in activity?</th>
<th>Activity Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>no</td>
<td>Turns nothing in</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>Completes activity; may have some misconceptions about material</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>yes</td>
<td>Demonstrates exceptional understanding of material; answers are very thorough and thoughtful</td>
</tr>
</tbody>
</table>

Remember, you must complete ALL three components to receive credit. For example, if you are not present in class, but turn in the activity, you will NOT receive any credit. Sorry, but NO EXCEPTIONS. It is also your responsibility to make sure you are marked as present for class.

August 19, 2014
Mid-term exam: We will have one mid-term exam with about 25 questions, building on materials from the first part of the class. Because we are not interested in memorization, you can bring one 8.5 x 11" sheet of notes to the exam (yup, both sides!). This exam will be given during the regular class meeting on 10 October, with a re-take version on 17 October (see below). DO NOT MISS THE 10 OCTOBER EXAM; you are not eligible for the re-take opportunity if you are unexcused from the 10 October exam.

IMPORTANT! Everyone will have the chance to re-take the mid-term exam the following week. To do the re-take, you must complete at least two of the weekly Mastery exercises from the preceding weeks during the period between the first mid-term and the re-take (feel free to do more than 2!). Once you complete those mastery exercises (and you cannot do the re-take unless you have completed them), you will be able to re-take a new version of the mid-term. If your grade for the mid-term was \( > 75\% \), your mid-term grade will be the AVERAGE of your two scores. If your grade for the midterm was \( \leq 75\% \), then your mid-term grade will be the HIGHER of your two scores.

Final exam: We will have a final exam with about 50 questions, building on materials from the entire class but focusing a bit more on the second half. Because we are not interested in memorization, you can bring one 8.5 x 11" sheet of notes to the exam. This exam will be given on a particular day during finals week. Please check the ASU Exam Schedule. DO NOT MISS THIS EXAM. Unfortunately there will be no opportunity for a mastery re-take of the final.

Attendance and excused absences: You must attend all class meetings in order to take the quizzes and engage the active learning materials. However, illness and other matters can happen to all of us, so don't come to class sick. If you miss an in-class quiz, there are no make-ups but you can present us with written documentation from your doctor or the student health center within one week of missing the class to obtain an Excused Absence and then take that week's quiz during the following week as part the Mastery process. (Excused Absences can also be obtained due to family emergencies; these should also be documented.) Otherwise, that "miss" will be counted against the three "low score" quizzes that you are allocated to drop.

Unexcused absences from active learning sessions will affect your preparation/participation points as described above. In addition, beyond three missed sessions, each one will cost you 2.5% of your overall grade in the class (e.g. 25 points). If you have questions, please come see us. Note that Excused Absences can also be obtained if you miss class due to official university-sanctioned activity according to standard ASU policy. Note that accumulation of multiple Excused Absences will probably initiate a discussion of a medical withdrawal from the class.

If you have a documented illness that results in having Excused Absences from both offerings of the mid-term, your mid-term exam grade will be calculated based on your scores on the weekly quizzes and the final exam. Without that, you will get a zero for the mid-term. Similar rules hold for the Final Exam. It will not be possible to be excused from both the mid-term and the final; such a case would entail a medical withdrawal.

Finally, note that it is your responsibility to keep up to date on all announcements and updates provided by the class Blackboard site.

The Biology 151 Laboratory

The laboratory is a critical part of BIO151. These are not cookbook exercises in which you are told to this, then that, and then that. Instead, you will be doing science in the lab, trying to solve problems, and formulate and test hypotheses scientifically with hands-on materials. The points you earn in lab are based on a mix of quizzes, homework, and a project assignment. Your lab teaching assistant (TA) will explain the details when you meet in lab. Because of the importance of the lab physical experience, you must attend all laboratory meetings. If you have a legitimate excuse to miss your scheduled meeting, you MUST make an arrangement with your TA to attend another lab section during that same week. If you miss or depart early from one lab exercise, you will lose 25 points. If you have two such unexcused absences, you will lose an additional 50 points from the course total. If you have three absences from labs, whether they are excused OR unexcused, you will receive a failing grade for the course (except for medical withdrawals). (Late-registering students who have missed a lab due to late registration must contact their lab TA regarding the absence policy as it applies to the first weeks of class.) Please note: If your lab falls on a holiday then you MUST sign up and attend a make-up lab within that week. Your TA will provide further information. Your TA will also have a more detailed syllabus that has useful information about what to expect in lab.

Academic Integrity

In the “Student Academic Integrity Policy” manual, ASU defines “Plagiarism” as using another's words, ideas, materials, or work without properly acknowledging and documenting the source. Students are responsible for knowing the rules governing the use of another's work or materials and for acknowledging and documenting the source appropriately.” You can find this definition at: https://provost.asu.edu/academicintegrity/defined
Academic dishonesty, including inappropriate collaboration and the uncredited use of other's written work will not be tolerated. We're quite serious about this. There will be severe sanctions for cheating, plagiarizing, and any other form of academic dishonesty, including an “EX” grade for the course and referral to the relevant University judicial body. It is the student's obligation to read and uphold the ASU Academic Dishonesty Policy and act with honesty and integrity and respect the rights of others in carrying out all academic assignments and examinations.

You are strongly encouraged to work in groups for appropriate activities in class and when studying. However, graded assignments must always be your own independent work. Students who submit identical or reworded papers or writings of others will be subject to disciplinary action. NOTE! Misuse of TP clickers that may be used in quizzes constitutes cheating and will be dealt with accordingly.

Bottom line: Don't cheat — you're a better person than that!

Threatening and Disruptive Behavior

This is just a small, hopefully superfluous, reminder that ASU has strict policies about student behavior that interferes with the peaceful conduct of university-related business or activities. Consult Student Services Manual sections SSM 104-01, SSM 104-02, and SSM 201-10.

SI (Supplemental Instruction)

SI seeks to help students process material presented in class through facilitated group discussion led by a trained peer who has already successfully completed introductory biology coursework and beyond. More information will be available on Blackboard under the SI Study Group or via our BIO151 SI facilitator Chaylee Kohler (Chaylee.Kohler@asu.edu).

Blackboard Help

You will be using Blackboard a lot this semester. Here are some resources to help if you encounter problems:

- Blackboard help for students: http://asu.force.com/kb/articles/Informational/Blackboard-Help-for-Students/
- You can search the student's knowledge base at http://asu.force.com/kb/ to locate links to other help articles.
- For immediate assistance, call ASU at 1-855-278-5080. If you have technical problems, please call them!
- Visit the My ASU Service Center (my.asu.edu/service) to get personalized support through 24/7 live chat or by submitting your request online.

August 19, 2014

4
<table>
<thead>
<tr>
<th>Week of:</th>
<th>Module</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/17/2014</td>
<td>Module 1: Science &amp; Reason</td>
<td>C</td>
<td>AL</td>
<td>C (no quiz)</td>
</tr>
<tr>
<td>8/24/2014</td>
<td>Module 2: Diversity/Taxonomy</td>
<td></td>
<td></td>
<td>AL</td>
</tr>
<tr>
<td>8/31/2014</td>
<td>Module 3: Ecology</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>9/7/2014</td>
<td>Module 4: Evolution 1</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>9/14/2014</td>
<td>Module 5: Evolution 2</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>9/21/2014</td>
<td>Module 6: Genetics</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>9/28/2014</td>
<td>Module 7: Genetics (con't)</td>
<td>AL</td>
<td>C (cells)</td>
<td>MIDTERM EXAM</td>
</tr>
<tr>
<td>10/5/2014</td>
<td>Module 8: Cells</td>
<td></td>
<td>AL</td>
<td>MIDTERM EXAM (re-take)</td>
</tr>
<tr>
<td>10/12/2014</td>
<td>Module 9: Molecular Biology 1</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>10/19/2014</td>
<td>Module 10: Molecular Biology 2</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>10/26/2014</td>
<td>Module 11: Respiration &amp; Photosynthesis</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td>11/2/2014</td>
<td>Module 12: Organismal Systems</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(diabetes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/9/2014</td>
<td>Module 13 Global Systems</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(climate change)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/16/2014</td>
<td>Module 14 Science &amp; Reason 2</td>
<td>C</td>
<td>AL</td>
<td>NO CLASS</td>
</tr>
<tr>
<td>11/23/2014</td>
<td>Module 15 Synthesis &amp; Integration</td>
<td>C</td>
<td>AL</td>
<td></td>
</tr>
</tbody>
</table>

August 19, 2014
1 Biology and the Tree of Life
1.1 What Does It Mean to Say That Something Is Alive? 2
1.2 The Cell Theory 2
All Organisms Are Made of Cells 2
Where Do Cells Come From? 3
1.3 The Theory of Evolution by Natural Selection 5
What Is Evolution? 5
What Is Natural Selection? 5
1.4 The Tree of Life 6
Using Molecules to Understand the Tree of Life 6
How Should We Name Branches on the Tree of Life? 8
1.5 Doing Biology 9
The Nature of Science 9
Why Do Giraffes Have Long Necks? An Introduction to Hypothesis Testing 9
How Do Ants Navigate? An Introduction to Experimental Design 11
CHAPTER REVIEW 14

UNIT 1 THE MOLECULAR ORIGIN AND EVOLUTION OF LIFE 18

2 Water and Carbon: The Chemical Basis of Life
2.1 Atoms, Ions, and Molecules: The Building Blocks of Chemical Evolution 19
Basic Atomic Structure 19
How Does Covalent Bonding Hold Molecules Together? 21
Ionic Bonding, Ions, and the Electron-Sharing Continuum 22
Some Simple Molecules Formed from C, H, N, and O 23
The Geometry of Simple Molecules 23
Representing Molecules 24
2.2 Properties of Water and the Early Oceans 25
Why Is Water Such an Efficient Solvent? 25
What Properties Are Correlated with Water's Structure? 26
The Role of Water in Acid–Base Reactions 28
2.3 Chemical Reactions, Energy, and Chemical Evolution 30
How Do Chemical Reactions Happen? 30
What Is Energy? 31
What Makes a Chemical Reaction Spontaneous? 31
2.4 Investigating Chemical Evolution: Approaches and Model Systems 32
Early Origin-of-Life Experiments 33
Recent Origin-of-Life Experiments 34
2.5 The Importance of Organic Molecules 36
Linking Carbon Atoms Together 36
Functional Groups 37
CHAPTER REVIEW 38

3 Protein Structure and Function 41
3.1 Amino Acids and Their Polymerization 42
The Structure of Amino Acids 42
The Nature of Side Chains 42
How Do Amino Acids Link to Form Proteins? 44
3.2 What Do Proteins Look Like? 47
Primary Structure 48
Secondary Structure 48
Tertiary Structure 49
Quaternary Structure 50
3.3 Folding and Function 52
Normal Folding Is Crucial to Function 52
Protein Shape Is Flexible 53
3.4 Proteins Are the Most Versatile Macromolecules in Cells 54
Why Are Enzymes Good Catalysts? 54
Was the First Living Entity a Protein Catalyst? 55
CHAPTER REVIEW 55

4 Nucleic Acids and the RNA World 57
4.1 What Is a Nucleic Acid? 58
Could Chemical Evolution Result in the Production of Nucleotides? 59
How Do Nucleotides Polymerize to Form Nucleic Acids? 59
4.2 DNA Structure and Function 61
DNA Functions as an Information-Containing Molecule 64
4.3 RNA Structure and Function  65
Structurally, RNA Differs from DNA  65
RNA's Structure Makes It an Extraordinarily Versatile Molecule  66
RNA Is an Information-Containing Molecule  67
RNA Can Function as a Catalytic Molecule  67

4.4 In Search of the First Life-Form  68
How Biologists Study the RNA World  68
The RNA World May Have Sparked the Evolution of Life  69
CHAPTER REVIEW  69

5 An Introduction to Carbohydrates  72
5.1 Sugars as Monomers  73
What Distinguishes One Monosaccharide from Another?  73
Monosaccharides and Chemical Evolution  74

5.2 The Structure of Polysaccharides  75
Starch: A Storage Polysaccharide in Plants  76
Glycogen: A Highly Branched Storage Polysaccharide in Animals  76
Cellulose: A Structural Polysaccharide in Plants  76
Chitin: A Structural Polysaccharide in Fungi and Animals  76
Peptidoglycan: A Structural Polysaccharide in Bacteria  76
Polysaccharides and Chemical Evolution  78

5.3 What Do Carbohydrates Do?  78
Carbohydrates Can Provide Structural Support  78
The Role of Carbohydrates in Cell Identity  78
Carbohydrates and Energy Storage  80
CHAPTER REVIEW  81

6 Lipids, Membranes, and the First Cells  84
6.1 Lipid Structure and Function  85
Bond Saturation Is an Important Aspect of Hydrocarbon Structure  85
A Look at Three Types of Lipids Found in Cells  86
The Structures of Membrane Lipids  87
Were Lipids Present during Chemical Evolution?  88

6.2 Phospholipid Bilayers  88
Artificial Membranes as an Experimental System  88
Selective Permeability of Lipid Bilayers  89
How Does Lipid Structure Affect Membrane Permeability?  90
How Does Temperature Affect the Fluidity and Permeability of Membranes?  90

6.3 How Molecules Move across Lipid Bilayers: Diffusion and Osmosis  91
Diffusion  91
Osmosis  92
Membranes and Chemical Evolution  93

6.4 Membrane Proteins  94
Development of the Fluid-Mosaic Model  94
Systems for Studying Membrane Proteins  96
Facilitated Diffusion via Channel Proteins  96
Facilitated Diffusion via Carrier Proteins  99
Pumps Perform Active Transport  99

Plasma Membranes and the Intracellular Environment  100
CHAPTER REVIEW  102

7 Inside the Cell  106
7.1 Bacterial and Archaeal Cell Structures and Their Functions  107
A Revolutionary New View  107
Prokaryotic Cell Structures: A Parts List  107

7.2 Eukaryotic Cell Structures and Their Functions  110
The Benefits of Organelles  110
Eukaryotic Cell Structures: A Parts List  110

7.3 Putting the Parts into a Whole  118
Structure and Function at the Whole-Cell Level  118
The Dynamic Cell  118

7.4 Cell Systems I: Nuclear Transport  119
Structure and Function of the Nuclear Envelope  119
How Do Large Molecules Enter the Nucleus?  120

7.5 Cell Systems II: The Endomembrane System  121
Manufactures, Ships, and Recycles Cargo  121
Studying the Pathway through the Endomembrane System  121
Entering the Endomembrane System: The Signal Hypothesis  123
Moving from the ER to the Golgi  124
What Happens Inside the Golgi Apparatus?  124
How Do Proteins Reach Their Destinations?  125
Recycling Material in the Lysosome  128

7.6 Cell Systems III: The Dynamic Cytoskeleton  127
Actin Filaments  127
Intermediate Filaments  129
Microtubules  129
Flagella and Cilia: Moving the Entire Cell  131
CHAPTER REVIEW  133

8 Energy and Enzymes: An Introduction to Metabolic Pathways  136

8.1 What Happens to Energy in Chemical Reactions?  137
Chemical Reactions Involve Energy Transformations  137
Temperature and Concentration Affect Reaction Rates  139

8.2 Nonspontaneous Reactions May Be Driven Using Chemical Energy  139
Redox Reactions Transfer Energy via Electrons  141
ATP Transfers Energy via Phosphate Groups  143

8.3 How Enzymes Work  144
Enzymes Help Reactions Clear Two Hurdles  144
What Limits the Rate of Catalysis?  147
Do Enzymes Work Alone?  147

8.4 What Factors Affect Enzyme Function?  148
Enzymes Are Optimized for Particular Environments  148
Most Enzymes Are Regulated  149
UNIT 3 GENE STRUCTURE AND EXPRESSION 237

13 Meiosis 237

13.1 How Does Meiosis Occur? 238
Chromosomes Come in Distinct Sizes and Shapes 238
The Concept of Ploidy 238
An Overview of Meiosis 239
The Phases of Meiosis I 242
The Phases of Meiosis II 244
A Closer Look at Synapsis and Crossing Over 246

13.2 Meiosis Promotes Genetic Variation 247
Chromosomes and Heredity 247
The Role of Independent Assortment 247
The Role of Crossing Over 248
How Does Fertilization Affect Genetic Variation? 248

13.3 What Happens When Things Go Wrong in Meiosis? 249
How Do Mistakes Occur? 250
Why Do Mistakes Occur? 249

13.4 Why Does Meiosis Exist? 251
The Paradox of Sex 251
The Purifying Selection Hypothesis 252
The Changing Environment Hypothesis 253
CHAPTER REVIEW 253

14 Mendel and the Gene 256

14.1 Mendel's Experimental System 257
What Questions Was Mendel Trying to Answer? 257
The Garden Pea Served as the First Model Organism in Genetics 257

14.2 Mendel's Experiments with a Single Trait 258
The Monohybrid Cross 259
Particulate Inheritance 261

14.3 Mendel's Experiments with Two Traits 263
The Dihybrid Cross 263
Using a Testcross to Confirm Predictions 265

14.4 The Chromosome Theory of Inheritance 266
Meiosis Explains Mendel's Principles 266
Testing the Chromosome Theory 267

14.5 Extending Mendel’s Rules 269
Linkage: What Happens When Genes Are Located on the Same Chromosome? 270
How Many Alleles Can a Gene Have? 271
Are Alleles Always Dominant or Recessive? 272
Does Each Gene Affect Just One Trait? 272
Is There More to Phenotype than Genotype? 273
QUANTITATIVE METHODS 14.1 Linkage 274
Can Mendel's Principles Explain Traits That Don't Fall into Distinct Categories? 275

14.6 Applying Mendel’s Rules to Human Inheritance 277
Identifying Human Alleles as Recessive or Dominant 277
Identifying Human Traits as Autosomal or Sex-Linked 278
CHAPTER REVIEW 279

15 DNA and the Gene: Synthesis and Repair 284

15.1 What Are Genes Made Of? 285
The Hershey-Chase Experiment 285
The Secondary Structure of DNA 286

15.2 Testing Early Hypotheses about DNA Synthesis 287
Three Alternative Hypotheses 287
The Meselson-Stahl Experiment 289

15.3 A Model for DNA Synthesis 289
How Does Replication Get Started? 290
How Is the Helix Opened and Stabilized? 290
How Is the Leading Strand Synthesized? 291
How Is the Lagging Strand Synthesized? 292

15.4 Replicating the Ends of Linear Chromosomes 295
The End Replication Problem 296
Telomerase Solves the End Replication Problem 296
Telomerase Regulation 297

15.5 Repairing Mistakes and DNA Damage 297
Correcting Mistakes in DNA Synthesis 298
Repairing Damaged DNA 299
Xeroderma Pigmentosum: A Case Study 299
CHAPTER REVIEW 301

16 How Genes Work 304

16.1 What Do Genes Do? 305
The One-Gene, One-Enzyme Hypothesis 305
An Experimental Test of the Hypothesis 305

16.2 The Central Dogma of Molecular Biology 307
The Genetic Code Hypothesis 307
RNA as the Intermediary between Genes and Proteins 307
Dissecting the Central Dogma 308

16.3 The Genetic Code 310
How Long Is a Word in the Genetic Code? 310
How Did Researchers Crack the Code? 311

16.4 How Can Mutation Modify Genes and Chromosomes? 313
Point Mutation 313
Chromosome Mutations 314
CHAPTER REVIEW 315
21 Genomics and Beyond 389

21.1 Whole-Genome Sequencing 390
   How Are Complete Genomes Sequenced? 390
   Which Genomes Are Being Sequenced, and Why? 392
   Which Sequences Are Genes? 392

21.2 Bacterial and Archaeal Genomes 393
   The Natural History of Prokaryotic Genomes 393
   Lateral Gene Transfer in Bacteria and Archaea 394
   Metagenomics 395

21.3 Eukaryotic Genomes 395
   Transposable Elements and Other Repeated Sequences 396
   Gene Families 398
   Insights from the Human Genome Project 399

21.4 Functional Genomics, Proteomics, and Systems Biology 400
   What Is Functional Genomics? 400
   What Is Proteomics? 402
   What Is Systems Biology? 402
   CHAPTER REVIEW 403

UNIT 4 DEVELOPMENTAL BIOLOGY 405

22 Principles of Development 405

22.1 Shared Developmental Processes 406
   Cell Division 406
   Cell–Cell Interactions 407
   Cell Differentiation 407
   Cell Movement and Cell Expansion 407
   Cell Death 407

22.2 Genetic Equivalence and Differential Gene Expression in Development 408
   Evidence that Differentiated Plant Cells Are Genetically Equivalent 408
   Evidence that Differentiated Animal Cells Are Genetically Equivalent 409
   How Does Differential Gene Expression Occur? 409

22.3 Chemical Signals Trigger Differential Gene Expression 410

Morphogens Set Up the Major Body Axes 410
   Regulatory Genes Provide Increasingly Specific Positional Information 412
   Chemical Signals and Regulatory Genes Are Evolutionarily Conserved 414
   One Regulator Can Be Used Many Different Ways 415

22.4 Changes in Developmental Gene Expression Underlie Evolutionary Change 416
   CHAPTER REVIEW 417

23 An Introduction to Animal Development 419

23.1 Fertilization 420
   How Do Gametes from the Same Species Recognize Each Other? 421
   What Prevents More Than One Sperm from Entering the Egg? 421

23.2 Cleavage 423
   Partitioning Cytoplasmic Determinants 423
   Cleavage in Mammals 423

23.3 Gastrulation 424
   Formation of Germ Layers 425
   Creating Body Axes 425

23.4 Organogenesis 426
   Organizing Mesoderm into Somites 426
   Differentiation of Muscle Cells 429
   CHAPTER REVIEW 430

24 An Introduction to Plant Development 432

24.1 Embryogenesis 433
   What Happens during Plant Embryogenesis? 433
   Which Genes and Proteins Set Up Body Axes? 435

24.2 Vegetative Development 436
   Meristems Provide Lifelong Growth and Development 436
   Which Genes and Proteins Determine Leaf Shape? 436
   Do Plant Cells Become Irreversibly Determined? 438

24.3 Reproductive Development 438
   The Floral Meristem and the Flower 438
   The Genetic Control of Flower Structures 439
   CHAPTER REVIEW 441

UNIT 5 EVOLUTIONARY PROCESSES AND PATTERNS 444

25 Evolution by Natural Selection 444

25.1 The Evolution of Evolutionary Thought 445
   Flato and Typological Thinking 445
   Aristotle and the Great Chain of Being 445
   Lamarck and the Idea of Evolution as Change through Time 445
   Darwin and Wallace and Evolution by Natural Selection 446
25.2 The Pattern of Evolution: Have Species Changed, and Are They Related? 446
Evidence for Change through Time 446
Evidence of Descent from a Common Ancestor 449
Evolution's "Internal Consistency"—The Importance of Independent Data Sets 451

25.3 The Process of Evolution: How Does Natural Selection Work? 453
Darwin's Inspiration 453
Darwin's Four Postulates 454
The Biological Definitions of Fitness, Adaptation, and Selection 454

25.4 Evolution in Action: Recent Research on Natural Selection 454
Case Study I: How Did Mycobacterium Tuberculosis Become Resistant to Antibiotics? 454
Case Study II: Why Are Beak Size, Beak Shape, and Body Size Changing in Galápagos Finches? 456

25.5 Common Misconceptions about Natural Selection and Adaptation 459
Selection Acts on Individuals, But Evolutionary Change Occurs in Populations 459
Evolution Is Not Goal Directed 460
Organisms Do Not Act for the Good of the Species 461
There Are Constraints on Natural Selection 461
CHAPTER REVIEW 462

26 Evolutionary Processes 465

26.1 Analyzing Change in Allele Frequencies: The Hardy–Weinberg Principle 466
The Gene Pool Concept 466
QUANTITATIVE METHODS 26.1 Deriving the Hardy–Weinberg Principle 467
The Hardy–Weinberg Model Makes Important Assumptions 468
How Does the Hardy–Weinberg Principle Serve as a Null Hypothesis? 468

26.2 Nonrandom Mating 470
How Does Inbreeding Affect Allele Frequencies and Genotype Frequencies? 470
How Does Inbreeding Influence Evolution? 471

26.3 Natural Selection 472
How Does Selection Affect Genetic Variation? 472
Sexual Selection 475

26.4 Genetic Drift 478
Simulation Studies of Genetic Drift 478
Experimental Studies of Genetic Drift 479
What Causes Genetic Drift in Natural Populations? 481

26.5 Gene Flow 482
Measuring Gene Flow between Populations 482
Gene Flow Is Random with Respect to Fitness 483

26.6 Mutation 483
Mutation as an Evolutionary Process 484
Experimental Studies of Mutation 484
Studies of Mutation in Natural Populations 485
Take-Home Messages 485
CHAPTER REVIEW 486

27 Speciation 489

27.1 How Are Species Defined and Identified? 490
The Biological Species Concept 490
The Morphospecies Concept 490
The Phylogenetic Species Concept 491
Species Definitions in Action: The Case of the dusky Seaside Sparrow 492

27.2 Isolation and Divergence in Allopatry 494
Allopatric Speciation by Dispersal 494
Allopatric Speciation by Vicariance 495

27.3 Isolation and Divergence in Sympatry 495
Sympatric Speciation by Disruptive Selection 496
Sympatric Speciation by Polyploidy 497

27.4 What Happens When Isolated Populations Come into Contact? 499
Reinforcement 499
Hybrid Zones 500
New Species through Hybridization 501
CHAPTER REVIEW 502

28 Phylogenies and the History of Life 505

28.1 Tools for Studying History: Phylogenetic Trees 506
How Do Biologists Estimate Phylogenies? 506
How Can Biologists Distinguish Homoplasy from Homoplasy? 506
Whale Evolution: A Case Study 510

28.2 Tools for Studying History: The Fossil Record 511
How Do Fossils Form? 511
Limitations of the Fossil Record 512
Life's Time Line 513

28.3 Adaptive Radiation 516
Why Do Adaptive Radiations Occur? 516
The Cambrian Explosion 518

28.4 Mass Extinction 520
How Do Mass Extinctions Differ from Background Extinctions? 520
The End-Permian Extinction 521
What Killed the Dinosaurs? 521
The Sixth Mass Extinction? 523
CHAPTER REVIEW 523

UNIT 6 THE DIVERSIFICATION OF LIFE 528

Bacteria and Archaea 528

29.1 Why Do Biologists Study Bacteria and Archaea? 529
Biological Impact 530
Some Microbes Thrive in Extreme Environments 530
Medical Importance 531
Role in Bioremediation 533

29.2 How Do Biologists Study Bacteria and Archaea? 533
Using Enrichment Cultures 534

DETAILED CONTENTS xii
29.3 What Themes Occur in the Diversification of Bacteria and Archaea? 536
Morphological Diversity 536
Metabolic Diversity 538
Ecological Diversity and Global Impacts 541

29.4 Key Lineages of Bacteria and Archaea 544
Bacteria 544
Archaea 544
- Bacteria > Firmicutes 545
- Bacteria > Cyanobacteria 545
- Bacteria > Actinobacteria 546
- Bacteria > Spirochaetes (Spirochetes) 546
- Bacteria > Chlamydiae 547
- Bacteria > Proteobacteria 547
- Archaea > Thaumarchaeota 548
- Archaea > Crenarchaeota 548
- Archaea > Euryarchaeota 549

CHAPTER REVIEW 549

30 Protists 552

30.1 Why Do Biologists Study Protists? 554
Impacts on Human Health and Welfare 554
Ecological Importance of Protists 556

30.2 How Do Biologists Study Protists? 557
Microscopy: Studying Cell Structure 557
Evaluating Molecular Phylogenies 558
Discovering New Lineages via Direct Sequencing 558

30.3 What Themes Occur in the Diversification of Protists? 559
What Morphological Innovations Evolved in Protists? 559
How Do Protists Obtain Food? 563
How Do Protists Move? 565
How Do Protists Reproduce? 566
Life Cycles—Haploid versus Diploid Dominated 566

30.4 Key Lineages of Protists 569
Amoebozoa 569
Excavata 569

Planteae 569
Rhizaria 569
Alveolata 570
Stramenopila (Heterokonta) 570
- Amoebozoa > Plasmodial Slime Molds 570
- Excavata > Parabasalids, Diplomonads, and Euglenids 571
- Plantae > Red Algae 572
- Rizaria > Foraminifera 572
- Alveolata > Ciliates, Dinoflagellates, and Apicomplexans 573
- Stramenopila > Water Molds, Diatoms, and Brown Algae 574

CHAPTER REVIEW 575

31 Green Algae and Land Plants 577

31.1 Why Do Biologists Study the Green Algae and Land Plants? 578
Plants Provide Ecosystem Services 578
Plants Provide Humans with Food, Fuel, Fiber, Building Materials, and Medicines 579

31.2 How Do Biologists Study Green Algae and Land Plants? 580
Analyzing Morphological Traits 580
Using the Fossil Record 581
Evaluating Molecular Phylogenies 582

31.3 What Themes Occur in the Diversification of Land Plants? 583
The Transition to Land, I: How Did Plants Adapt to Dry Conditions with Intense Sunlight? 584
Mapping Evolutionary Changes on the Phylogenetic Tree 586
The Transition to Land, II: How Do Plants Reproduce in Dry Conditions? 586
The Angiosperm Radiation 595

31.4 Key Lineages of Green Algae and Land Plants 597
Green Algae 597
Nonvascular Plants 598
Seedless Vascular Plants 598
Seed Plants 599
- Green Algae > Ulvophyceae (Ulvophytes) 599
- Green Algae > Coleochaetophyceae (Coleochaetes) 600
- Green Algae > Charophyceae (Stoneworts) 600
- Nonvascular Plants > Hepaticophyta (Liverworts) 601
- Nonvascular Plants > Bryophyta (Mosses) 601
- Nonvascular Plants > Anthocerophyta (Hornworts) 602
- Seedless Vascular Plants > Lycophyta (Lycophytes, or Club Mosses) 603
- Seedless Vascular Plants > Psilotophyta (Whisk Ferns) 603
- Seedless Vascular Plants > Pteridophyta (Ferns) 604
- Seedless Vascular Plants > Equisetophyta (or Sphenophyta) (Horsetails) 605
- Seed Plants > Gymnosperms > Ginkgophyta (Ginkgos) 606
- Seed Plants > Gymnosperms > Cycadophyta (Cycads) 606
- Seed Plants > Gymnosperms > Cupressophyta (Redwoods, Junipers, Yews) 607
- Seed Plants > Gymnosperms > Pinophyta (Pines, Spruces, Firs) 607
32 Fungi  612
32.1 Why Do Biologists Study Fungi?  613
   Fungi Have Important Economic and Ecological Impacts  613
   Fungi Provide Nutrients for Land Plants  614
   Fungi Accelerate the Carbon Cycle on Land  614
32.2 How Do Biologists Study Fungi?  615
   Analyzing Morphological Traits  615
   Evaluating Molecular Phylogenies  618
32.3 What Themes Occur in the Diversification of Fungi?  619
   Fungi Participate in Several Types of Symbioses  619
   What Adaptations Make Fungi Such Effective Decomposers?  623
   Variation in Reproduction  624
   Four Major Types of Life Cycles  625
32.4 Key Lineages of Fungi  628
   • Fungi > Microsporidia  628
   • Fungi > Chytrids  629
   • Fungi > Zygomycetes  629
   • Fungi > Glomeromycota  630
   • Fungi > Basidiomycota (Club Fungi)  630
   • Fungi > Ascomycota > Lichen-Formers  631
   • Fungi > Ascomycota > Non-Lichen-Formers  632
CHAPTER REVIEW  633

33 An Introduction to Animals  636
33.1 What Is an Animal?  637
33.2 What Key Innovations Occurred during the Evolution of Animals?  637
   Origin of Multicellularity  638
   Origin of Embryonic Tissue Layers  640
   Origin of Bilateral Symmetry, Cephalization, and the Nervous System  641
   Origin of the Coelom  643
   Origin of Protostomes and Deuterostomes  644
   Origin of Segmentation  645
33.3 What Themes Occur in the Diversification of Animals?  646
   Sensory Organs  646
   Feeding  646
   Movement  649
   Reproduction  650
   Life Cycles  651
33.4 Key Lineages of Animals: Non-Bilaterialian Groups  652
   • Porifera (Sponges)  652
   • Ctenophora (Comb Jellies)  653
   • Crinaria (Jellyfish, Corals, Anemones, Hydroids)  653
CHAPTER REVIEW  655

34 Protostome Animals  657
34.1 What Is a Protostome?  658
   The Water-in-Land Transition  659
   Modular Body Plans  660
34.2 What Is a Lophotrochozoan?  660
   Wormlike Lophotrochozoans  661
   What Is a Mollusk?  662
   Key Lineages: Lophotrochozoans  664
      • Lophotrochozoans > Bryozoa (Bryozoans)  665
      • Lophotrochozoans > Rotifera (Rotifers)  665
      • Lophotrochozoans > Phylum Echiurida (Echinothurida)  666
      • Lophotrochozoans > Annelida (Segmented Worms)  667
      • Lophotrochozoans > Mollusca > Bryophyta (Clams, Mussels, Scallops, Oysters)  668
      • Lophotrochozoans > Mollusca > Gastropoda (Snails, Slugs, Nudibranchs)  668
      • Lophotrochozoans > Mollusca > Polyplacophora (Chitons)  669
      • Lophotrochozoans > Mollusca > Cephalopoda (Nautilus, Cuttlefish, Squid, Octopuses)  669
34.3 What Is an Ecdysozoan?  570
   What Is an Arthropod?  570
   Arthropod Metamorphosis  572
   Key Lineages: Ecdysozoans  572
      • Ecdysozoans > Nematoda (Roundworms)  574
      • Ecdysozoans > Arthropoda > Myriapoda (Millipedes, Centipedes)  575
      • Ecdysozoans > Arthropoda > Insecta (Insects)  575
      • Ecdysozoans > Arthropoda > Crustacea (Shrimp, Lobsters, Crabs, Barnacles, Isopods, Coxopods)  577
      • Ecdysozoans > Arthropoda > Chelicera (Sea Spiders, Horseshoe Crabs, Daddy Longlegs, Mites, Ticks, Scorpions, Spiders)  578
CHAPTER REVIEW  579

35 Deuterostome Animals  681
35.1 What Is an Echinoderm?  682
   The Echinoderm Body Plan  682
   How Do Echinoderms Feed?  683
   Key Lineages: The Echinoderms  684
      • Echinodermata > Asteroidea (Sea Stars)  685
      • Echinodermata > Echinoida (Sea Urchins and Sand Dollars)  685
35.2 What Is a Chordate?  686
   Three Chordate "Subphyla"  686
   Key Lineages: The Invertebrate Chordates  687
      • Chordata > Cephalochordata (Lancelets)  687
      • Chordata > Urochordata (Tunicates)  688
35.3 What Is a Vertebrate?  688
   An Overview of Vertebrate Evolution  689
   Key Innovations in Vertebrates  691
   Key Lineages: The Vertebrate Chordates  696
      • Chordata > Vertebrata > Myxinoida (Hagfish) and Petromyzontoida (Lampreys)  697

DETAILED CONTENTS  xiii
36 Viruses 711

36.1 Why Do Biologists Study Viruses? 712
Recent Viral Epidemics in Humans 712
Current Viral Pandemics in Humans: AIDS 712

36.2 How Do Biologists Study Viruses? 714
Analyzing Morphological Traits 715
Analyzing the Genetic Material 715
Analyzing the Phases of Replicative Growth 718
Analyzing How Viruses Coexist with Host Cells 721

36.3 What Themes Occur in the Diversification of Viruses? 722
Where Did Viruses Come From? 723
Emerging Viruses, Emerging Diseases 723

36.4 Key Lineages of Viruses 726
- Double-Stranded DNA (dsDNA) Viruses 726
- Double-Stranded RNA (dsRNA) Viruses 727
- Positive-Sense Single-Stranded RNA (+ssRNA) Viruses 727
- Negative-Sense Single-Stranded RNA (−ssRNA) Viruses 728
- RNA Reverse-Transcribing Viruses (Retroviruses) 728

CHAPTER REVIEW 729

37 Plant Form and Function 731

37.1 Plant Form: Themes with Many Variations 732
The Importance of Surface Area/Volume Relationships 732
The Root System 733

37.2 Primary Growth Extends the Plant Body 740
How Do Apical Meristems Produce the Primary Plant Body? 740
How Is the Primary Root System Organized? 741
How Is the Primary Shoot System Organized? 742

37.3 Cells and Tissues of the Primary Plant Body 742
The Dermal Tissue System 743
The Ground Tissue System 744
The Vascular Tissue System 746

37.4 Secondary Growth Widens Shoots and Roots 748
What Is a Cambium? 748
What Does Vascular Cambium Produce? 750
The Structure of a Tree Trunk 751

CHAPTER REVIEW 751

38 Water and Sugar Transport in Plants 754

38.1 Water Potential and Water Movement 755
What Factors Affect Water Potential? 755
Calculating Water Potential 756
Water Potentials in Soils, Plants, and the Atmosphere 757

38.2 How Does Water Move from Roots to Shoots? 759
Movement of Water and Solutes into the Root 759
Water Movement via Root Pressure 761
Water Movement via Capillary Action 761
The Cohesion-Tension Theory 762

38.3 Water Absorption and Water Loss 765
Limiting Water Loss 765
Obtaining Carbon Dioxide under Water Stress 766

38.4 Translocation of Sugars 768
Tracing Connections between Sources and Sinks 768
The Anatomy of Phloem 767
The Pressure-Flow Hypothesis 768
Phloem Loading 769
Phloem Unloading 771

CHAPTER REVIEW 772

39 Plant Nutrition 775

39.1 Nutritional Requirements of Plants 776
Which Nutrients Are Essential? 776
What Happens When Key Nutrients Are in Short Supply? 777

39.2 Soil: A Dynamic Mixture of Living and Nonliving Components 778
The Importance of Soil Conservation 779
What Factors Affect Nutrient Availability? 781

39.3 Nutrient Uptake 782
Mechanisms of Nutrient Uptake 783
Mechanisms of Ion Exclusion 785

39.4 Nitrogen Fixation 787
The Role of Symbiotic Bacteria 787
40 Plant Sensory Systems, Signals, and Responses 793

40.1 Information Processing in Plants 794
- How Do Cells Receive and Transduce an External Signal? 794
- How Are Cell–Cell Signals Transmitted? 795
- How Do Cells Respond to Cell–Cell Signals? 795

40.2 Blue Light: The Phototropic Response 796
- Phototropins as Blue-Light Receptors 796
- Auxin as the Phototropic Hormone 797

40.3 Red and Far-Red Light: Germination, Stem Elongation, and Flowering 800
- The Red/Far-Red "Switch" 800
- Phytochromes as Red/Far-Red Receptors 801
- How Were Phytochromes Isolated? 801
- Signals That Promote Flowering 802

40.4 Gravity: The Gravitropic Response 803
- The Statolith Hypothesis 804
- Auxin as the Gravitropic Signal 804

40.5 How Do Plants Respond to Wind and Touch? 805
- Changes in Growth Patterns 805
- Movement Responses 806

40.6 Youth, Maturity, and Aging: The Growth Responses 806
- Auxin and Apical Dominance 806
- Cytokinins and Cell Division 807
- Gibberellins and ABA: Growth and Dormancy 808
- Brassinosteroids and Body Size 812
- Ethylene and Senescence 812
- An Overview of Plant Growth Regulators 813

40.7 Pathogens and Herbivores: The Defense Responses 815

41 Plant Reproduction 822

41.1 An Introduction to Plant Reproduction 823
- Sexual Reproduction 823
- The Land Plant Life Cycle 823
- Asexual Reproduction 825

41.2 Reproductive Structures 826
- The General Structure of the Flower 826
- How Are Female Gametophytes Produced? 827
- How Are Male Gametophytes Produced? 828

41.3 Pollination and Fertilization 830
- Pollination 830
- Fertilization 832

41.4 The Seed 833
- Embryogenesis 833
- The Role of Drying in Seed Maturation 834
- Fruit Development and Seed Dispersal 834
- Seed Dormancy 835
- Seed Germination 837

CHAPTER REVIEW 838

UNIT 8 HOW ANIMALS WORK 842

42 Animal Form and Function 842

42.1 Form, Function, and Adaptation 843
- The Role of Fitness Trade-Offs 843
- Adaptation and Acclimatization 845

42.2 Tissues, Organs, and Systems: How Does Structure Correlate with Function? 845
- Structure-Function Relationships at the Molecular and Cellular Levels 846
- Tissues Are Groups of Cells That Function as a Unit 846
- Organs and Organ Systems 849

42.3 How Does Body Size Affect Animal Physiology? 850
- Surface Area/Volume Relationships: Theory 850
- Surface Area/Volume Relationships: Data 851
- Adaptations That Increase Surface Area 852

42.4 Homeostasis 853
- Homeostasis General Principles 853
- The Role of Regulation and Feedback 854

42.5 How Do Animals Regulate Body Temperature? 854
- Mechanisms of Heat Exchange 855
- Variation in Thermoregulation 855
- Endothermy and Ectothermy: A Closer Look 856
- Temperature Homeostasis in Endotherms 856
- Countercurrent Heat Exchangers 857

CHAPTER REVIEW 859

DETAILED CONTENTS XV
43 Water and Electrolyte Balance in Animals 861

43.1 Osmoregulation and Excretion 862
  What Is Osmotic Stress? 862
  Osmotic Stress in Seawater, in Freshwater, and on Land 862
  How Do Electolytes and Water Move across Cell Membranes? 864
  Types of Nitrogenous Waste: Impact on Water Balance 865

43.2 Water and Electrolyte Balance in Marine Fishes 866
  Osmoconformers versus Osmoregulators in Marine Fishes 866
  How Do Sharks Excrete Salt? 866

43.3 Water and Electrolyte Balance in Freshwater Fishes 868
  How Do Freshwater Fishes Osmoregulate? 868

43.4 Water and Electrolyte Balance in Terrestrial Insects 869
  How Do Insects Minimize Water Loss from the Body Surface? 869

43.5 Water and Electrolyte Balance in Terrestrial Vertebrates 871
  The Structure of the Mammalian Kidney 871
  The Function of the Mammalian Kidney: An Overview 872
  Filtration: The Renal Corpuscle 873
  Reabsorption: The Proximal Tubule 873
  Creating an Osmotic Gradient: The Loop of Henle 874
  Regulating Water and Electrolyte Balance: The Distal Tubule and Collecting Duct 877
  Urine Formation in Nonmammalian Vertebrates 878
  CHAPTER REVIEW 879

44 Animal Nutrition 882

44.1 Nutritional Requirements 883

44.2 Capturing Food: The Structure and Function of Mouthparts 884
  Mouthparts as Adaptations 884
  A Case Study: The Cichlid Jaw 884

44.3 How Are Nutrients Digested and Absorbed? 886
  An Introduction to the Digestive Tract 886
  An Overview of Digestive Processes 888
  The Mouth and Esophagus 888
  The Stomach 889
  The Small Intestine 892
  The Large Intestine 896

44.4 Nutritional Homeostasis—Glucose as a Case Study 897
  The Discovery of Insulin 897
  Insulin's Role in Homeostasis 897
  Diabetes Mellitus Has Two Forms 898
  The Type 2 Diabetes Mellitus Epidemic 898
  CHAPTER REVIEW 899

45 Gas Exchange and Circulation 902

45.1 The Respiratory and Circulatory Systems 903

45.2 Air and Water as Respiratory Media 903
  How Do Oxygen and Carbon Dioxide Behave in Air? 903
  How Do Oxygen and Carbon Dioxide Behave in Water? 904

45.3 Organs of Gas Exchange 905
  Physical Parameters: The Law of Diffusion 905
  How Do Gills Work? 906
  How Do Insect Tracheae Work? 907
  How Do Vertebrate Lungs Work? 909
  Homeostatic Control of Ventilation 911

45.4 How Are Oxygen and Carbon Dioxide Transported in Blood? 912
  Structure and Function of Hemoglobin 912
  CO2 Transport and the Buffering of Blood pH 915

45.5 Circulation 916
  What Is an Open Circulatory System? 916
  What Is a Closed Circulatory System? 917
  How Does the Heart Work? 919
  Patterns in Blood Pressure and Blood Flow 923
  CHAPTER REVIEW 925

46 Animal Nervous Systems 928

46.1 Principles of Electrical Signaling 929
  Types of Neurons in the Nervous System 929
  The Anatomy of a Neuron 929
  An Introduction to Membrane Potentials 930
  How Is the Resting Potential Maintained? 931
  QUANTITATIVE METHODS 46.1 Using the Nernst Equation to Calculate Equilibrium Potentials 932
  Using Microelectrodes to Measure Membrane Potentials 932
  What Is an Action Potential? 933

46.2 Dissecting the Action Potential 934
  Distinct Ion Currents Are Responsible for Depolarization and Repolarization 934
  How Do Voltage-Gated Channels Work? 934
  How Is the Action Potential Propagated? 938

46.3 The Synapse 938
  Synapse Structure and Neurotransmitter Release 939
  What Do Neurotransmitters Do? 940
  Postsynaptic Potentials 940
46.4 The Vertebrate Nervous System 942
   What Does the Peripheral Nervous System Do? 942
   Functional Anatomy of the CNS 943
   How Does Memory Work? 945
   CHAPTER REVIEW 949

47 Animal Sensory Systems 952
47.1 How Do Sensory Organs Convey Information to the Brain? 953
   Sensory Transduction 953
   Transmitting Information to the Brain 954
47.2 Mechanoreception: Sensing Pressure Changes 954
   How Do Sensory Cells Respond to Sound Waves and Other Forms of Pressure? 954
   Hearing: The Mammalian Ear 955
   The Lateral Line System in Fishes and Amphibians 958
47.3 Photoreception: Sensing Light 959
   The Insect Eye 960
   The Vertebrate Eye 960
47.4 Chemoreception: Sensing Chemicals 964
   Taste: Detecting Molecules in the Mouth 964
   Olfaction: Detecting Molecules in the Air 965
47.5 Other Sensory Systems 967
   Thermoreception: Sensing Temperature 967
   Electroreception: Sensing Electric Fields 967
   Magnetoreception: Sensing Magnetic Fields 968
   CHAPTER REVIEW 969

48 Animal Movement 972
48.1 How Do Muscles Contract? 973
   Early Muscle Experiments 973
   The Sliding-Filament Model 973
   How Do Actin and Myosin Interact? 974
   How Do Neurons Initiate Contraction? 976
48.2 Muscle Tissues 977
   Smooth Muscle 977
   Cardiac Muscle 978
   Skeletal Muscle 978
48.3 Skeletal Systems 980
   Hydrostatic Skeletons 981
   Endoskeletons 981
   Exoskeletons 983
48.4 Locomotion 983
   How Do Biologists Study Locomotion? 984
   Size Matters 986
   CHAPTER REVIEW 988

49 Chemical Signals in Animals 991
49.1 Cell-to-Cell Signaling: An Overview 992
   Major Categories of Chemical Signals 992
   Hormone Signaling Pathways 993
   What Makes Up the Endocrine System? 995
   Chemical Characteristics of Hormones 995
   How Do Researchers Identify a Hormone? 996
   A Breakthrough in Measuring Hormone Levels 997
49.2 What Do Hormones Do? 997
   How Do Hormones Direct Developmental Processes? 997
   How Do Hormones Coordinate Responses to Stressors? 1000
   How Are Hormones Involved in Homeostasis? 1001
49.3 How Is the Production of Hormones Regulated? 1003
   The Hypothalamus and Pituitary Gland 1004
   Control of Epinephrine by Sympathetic Nerves 1006
49.4 How Do Hormones Act on Target Cells? 1006
   Steroid Hormones Bind to Intracellular Receptors 1006
   Hormones That Bind to Cell-Surface Receptors 1008
   Why Do Different Target Cells Respond in Different Ways? 1010
   CHAPTER REVIEW 1010

50 Animal Reproduction 1013
50.1 Asexual and Sexual Reproduction 1014
   How Does Asexual Reproduction Occur? 1014
   Switching Reproductive Modes: A Case History 1014
   Mechanisms of Sexual Reproduction: Gametogenesis 1016
50.2 Fertilization and Egg Development 1018
   External Fertilization 1018
   Internal Fertilization 1019
   Unusual Mating Strategies 1020
   Why Do Some Females Lay Eggs While Others Give Birth? 1020
50.3 Reproductive Structures and Their Functions 1021
   The Male Reproductive System 1021
   The Female Reproductive System 1023
50.4 The Role of Sex Hormones in Mammalian Reproduction 1025
   Which Hormones Control Puberty? 1026
   Which Hormones Control the Menstrual Cycle in Mammals? 1027
50.5 Pregnancy and Birth in Mammals 1030
   Gestation and Early Development in Marsupials 1031
   Major Events during Human Pregnancy 1031
   How Does the Mother Nourish the Fetus? 1032
   Birth 1034
   CHAPTER REVIEW 1035

51 The Immune System in Animals 1037
51.1 Innate Immunity 1038
   Barriers to Entry 1038
   The Innate Immune Response 1039
51.2 Adaptive Immunity: Recognition 1041
   An Introduction to Lymphocytes 1042
   Lymphocytes Recognize a Diverse Array of Antigens 1044
   How Does the Immune System Distinguish Self from Nonself? 1045
51.3 Adaptive Immunity: Activation 1047
   The Clonal Selection Theory 1048
   T-Cell Activation 1048
   B-Cell Activation and Antibody Secretion 1050
51.4 Adaptive Immunity: Response and Memory 1051
   How Are Extracellular Pathogens Eliminated? 1052

DETAILED CONTENTS xvi
52.4 Types of Terrestrial Biomes 1068
Natural Biomes 1068

53 Behavioral Ecology 1082
53.1 An Introduction to Behavioral Ecology 1083
Proximate and Ultimate Causation 1083
Types of Behavior: An Overview 1084
Five Questions in Behavioral Ecology 1085
53.2 What Should I Eat? 1085
Proximate Causes: Foraging Alleles in Dro sophila melanogaster 1085
Ultimate Causes: Optimal Foraging 1085
53.3 Who Should I Mate With? 1087
Proximate Causes: How Is Sexual Activity Triggered in Anolis Lizards? 1087
Ultimate Causes: Sexual Selection 1088
53.4 Where Should I Live? 1089
Proximate Causes: How Do Animals Navigate? 1089
Ultimate Causes: Why Do Animals Migrate? 1091
53.5 How Should I Communicate? 1091
Proximate Causes: How Do Honeybees Communicate? 1092
Ultimate Causes: Why Do Honeybees Communicate the Way They Do? 1093
When Is Communication Honest or Deceitful? 1094
53.6 When Should I Cooperate? 1096
Kin Selection 1096
QUANTITATIVE METHODS 53.1 Calculating the Coefficient of Relatedness 1096
Manipulation 1097
Reciprocal Altruism 1098
Cooperation and Mutualism 1098
CHAPTER REVIEW 1098

54 Population Ecology 1101
54.1 Distribution and Abundance 1102
QUANTITATIVE METHODS 54.1 Mark–Recapture Studies 1103
54.2 Demography 1103
Life Tables 1104
Weekly learning objectives for BIO151 Biological Thinking

Science & Reason

Nature of Science
- Identify and describe the philosophical assumptions and limitations of science
- Differentiate among claims/approaches that are scientific and non-scientific
- Use evidence to rank scientific explanations
- Recognize some defining attributes of scientific knowledge
  - It can be biased, but the rules of science are geared to minimize bias.
  - It is stronger when it has multiple lines of evidence.
  - It is always open to change with compelling new evidence.
  - It is established through “fair tests.” (“controls”)
  - It is not about achieving complete certainty, but rather about achieving relatively low degrees of uncertainty.

Process of science
- Identify, describe, and apply the scientific method, including basic techniques such as the use of controls
- Differentiate among facts, hypotheses and theories.
- Recognize the role of uncertainty as a necessary feature of the nature of science
- Describe why the outcome of a single experiment is rarely sufficient to establish a knowledge claim
- Recognize and explain the differences between a hypothesis and a prediction

Context of science
- Recognize and demonstrate the use of scientific reasoning in personal and societal contexts

Biological Diversity & Taxonomy

Science Content
- Recognize the extent and patterns of distribution of species diversity on Earth.
- Understand the nested hierarchy of shared characteristics
- Use observations and data to classify organisms
- Recognize and use the Linnean system of biological classification

Process of science
- Describe the science of taxonomy and the role of biological classification

Context of science
- Recognize the historical context of taxonomy during “Age of Discovery,” Linneaus, etc.

Ecology

Science Content
- Understand some of the major hypotheses for observed variation in species diversity in ecological communities.
- Understand concepts of exponential vs logistic growth and explain the concept of carrying capacity in an ecosystem.
  - Understand the effects of limiting factors on population distributions and dynamics.
  - Analyze possible causes of population fluctuations
  - Describe competitive, mutualistic, predator/prey, and parasitic/disease relationships

Process of science
  - Use a model to generate and test hypotheses
  - Describe and apply concept of multiple causality

Context of science
  - Recognize implications of concepts such as exponential growth, carrying capacity, and limiting factors for human society.

Evolution 1 and 2 (From whence diversity?)

Science Content
  - Describe and distinguish creationism, spontaneous generation, and evolution
  - Understand and evaluate evidence including the fossil record, homologous traits, vestigial traits, biogeography, and experimental data to assess the validity of the three hypotheses.
  - Describe the theory of uniformitarianism and understand its contribution to the development of the theory of evolution.
  - Understand how evolution/diversification can account for hierarchy of shared characteristics (including homologous traits, vestigial traits)

Natural Selection
  - Describe Darwin’s theories and explain how heritable variation and limits on reproductive success lead to differential reproduction (natural selection)
  - Propose explanations for the rise of adaptations that are consistent with evolution by natural selection.
  - Understand the differences between Lamarck’s hypothesis of evolution by inheritance of acquired characteristics and Darwin’s theory of evolution by natural selection.

Speciation
  - Describe Darwin’s theories and how principles of natural selection can lead to speciation
  - Define and differentiate between allopatric and sympatric speciation
  - Propose and analyze scenarios by which speciation might occur.
  - Describe the biological species concept

Process of science
  - Distinguish between a theory and a fact in the context of evolution.
  - Understand how creationism violates the assumptions of science and identify and articulate the misconceptions/logical flaws of arguments from intelligent design.

Context of science
  - Understand the key elements of the historical context within which Darwin’s ideas emerged and the events in his life leading to his theory.
  - Distinguish between societal controversy about evolution and scientific status of evolution within biology
  - Recognize relevance of constitutional limits regarding public school instruction about origins.
Genetics 1 and 2 (Inheritance)

Science Content
Probabilities
- Calculate probabilities and make a prediction of probabilities of contingent and alternative outcomes
- Recognize common misconceptions about randomness (e.g. representativeness, recency, effects of sample size)
- Describe the law of large numbers and its implications for sample size and replicates.

Introduction to Mendel and single trait crosses
- Recognize the historical context within which Mendel’s ideas emerged.
- List the aspects of Mendel’s experiments that enabled him to postulate his laws of inheritance.
- Understand the assumptions and limitations of Mendel’s model of inheritance.
- Make predictions and interpret results of single trait crosses.
- Recognize the role of Mendelian inheritance in various genetic diseases affecting humans.

Extension to two traits (dihybrid)
- Understand Mendel’s law of independent assortment and make predictions of two-trait crosses.

Process of science
- Recognize the historical context of genetics concepts leading up to and as transformed by Mendel

Context of science
- Recognize the medical and ethical implications of Mendelian inheritance for human disease

Cells (Cell Theory, mitosis and meiosis)

Science Content
- List the differences between eukaryotic and prokaryotic cells.
- Delineate the components of Cell Theory
- Name where chromosomes are found in the eukaryotic cell and explain why chromosomes come in pairs.
- List the “purposes” for mitosis (growth, repair, asexual reproduction)
- Understand the function of mitosis in terms of the genetic composition of progeny cells
- Explain the importance of meiosis and sexual reproduction in how it relates to Mendelian inheritance.
- Explain the differences between somatic cells, gametes, and embryos, while also understanding how they are related to one another.
- Be able to identify which cells are diploid or haploid (in an average eukaryote)

Process of science
- Recognize the historical events leading to the development of Cell Theory
- Understand the design and interpretation of Pasteur's experiments with "spontaneous generation"

Context of science
- Understand the nature of different categories of stem cells and their potential medical implications

**Molecular Biology 1 (What are genes made of?)**

**Science Content**
- Evaluate various lines of evidence to determine whether DNA or protein is the molecule of inheritance.
- Use evidence to explain the structure of DNA.
- Understand how the structure of DNA lends itself to replication.
- Understand how chromosomes, genes, alleles and DNA relate to one another.

**Process of science**
- Recognize the historical events leading to the discovery of the structure of DNA

**Molecular Biology 2 (How do genes work?)**

**Science Content**
- Describe the central ‘dogma’ of molecular biology.
- List the differences between RNA and DNA.
- Understand the structure and functions of proteins.
- Describe and accurately demonstrate the processes of transcription and translation.
- Predict the effects of mutations on an amino acid sequence.
- Describe how DNA, genes, alleles and mutations relate to evolution by natural selection.
- Delineate the similarities and differences between proteins and nucleic acids

**Context of science**
- Understand the societal (moral / ethical, economic) implications of genomic technologies for medicine, agriculture, industry, criminology, etc.

**Respiration and Photosynthesis**

**Science Content**
- Recognize various forms of energy in the physical world.
- Perform an energy balance of an organism.
- Recognize the definition of Calorie.
- Relate the physical rules of energy balance to the biological problem of weight gain / loss via diet and exercise.
- Recognize and apply the Laws of Thermodynamics in biological situations.
- Explain and delineate the process of aerobic respiration, accounting for the molecules involved, including those consumed and produced.
- Explain how aerobic respiration releases energy from sugars while capturing it in useful form.
- Explain and delineate the process of photosynthesis, accounting for the molecules involved, including those consumed and produced.

**Process of science**
- Recognize the historical events surrounding "phlogiston" theory and how it was transformed to our modern understanding of respiration and photosynthesis.
Context of science
- Understand the complexities and societal implications associated with increasing obesity in the USA.

Organismal systems: Homeostasis and health

Science Content
- Analyze and understand the physiological mechanisms of glucose regulation as a homeostatic system.
- Explain diabetes as a failure of homeostatic regulation.
- Describe and explain the structure and nature of positive and negative feedback systems.
- Diagnose interactive systems as involving positive or negative feedback

Process of science
- Understand the key findings and experiments leading to our modern understanding of diabetes

Context of science
- Recognize the impact of current trends in diabetes in modern society.

Ecological systems: Global change

Science Content
- Evaluate the controversy surrounding global climate change by examining scientific evidence.
- Explain the roles of photosynthesis and respiration in the global carbon cycle.
- Distinguish between anthropogenic and “natural” sources of variation in the climate systems.
- Understand the roles of different atmospheric components, including H2O, CO2, and CH4, in altering the radiative balance, and thus temperature, of the atmosphere.
- Analyze changes in atmospheric CO2 concentrations in terms of input and output models.

Process of science
- Read and interpret graphs.
- Understand the role of computer models in scientific investigations

Context of science
- Understand the process of peer review and the meaning of scientific consensus in the context of climate change.

Science & Reason 2

Science content
- Use a chi-square test to estimate the probability that a given outcome is just due to chance.

Process of science
- Apply critical thinking and scientific reasoning to evaluate medical claims
- Explain and distinguish important study design components involved in testing medical (and other) claims: randomization, placebos, double-blind design
- Understand and apply the components of the SEARCH formula to extraordinary claims
- Recognize the limitations of "post hoc" analysis in the context of claims of prophecies of future events.
- Use evidence and the Criteria of Adequacy to rank competing explanations
- Identify, describe, and apply the scientific method, including basic techniques such as the use of controls
- Recognize the role of uncertainty as a necessary feature of the nature of science

**Context of science**
- Recognize and demonstrate the use of scientific reasoning in personal and societal contexts
- Recognize the role of government regulation in products making medical claims and the limitations of such regulations

**Wrap-up**

The main objective for this week is:

- to gain a broader perspective on our class, on the role of science in an industrialized economy, and on the role of critical thinking in the functioning of a democracy