

ARIZONA STATE UNIVERSITY GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:

Co.	nν	and	paste	current	course in	formation	from	Class	Search	Course C	ataloa.

Subject CHE Number 462 Title Process Design Is this a cross-listed course? If yes, please identify course(s) Is this a shared course? No If so, list all academic units offering this course	Units: 3
If yes, please identify course(s)	
Is this a shared course? No If so, list all academic units offering this course	
Course description:	
Requested designation: (Choose One) Note- a <u>separate</u> proposal is required for each designation requested	
Eligibility:	
Permanent numbered courses must have completed the university's review and approval process. For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu or	

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/ 12/11, 7/12, 5/14

Chair/Director (Signature):

Arizona State University Criteria Checklist for

LITERACY AND CRITICAL INQUIRY - [L]

Rationale and Objectives

Literacy is here defined broadly as communicative competence—that is, competence in written and oral discourse. **Critical inquiry** involves the gathering, interpretation, and evaluation of evidence. Any field of university study may require unique critical skills that have little to do with language in the usual sense (words), but the analysis of written and spoken evidence pervades university study and everyday life. Thus, the General Studies requirements assume that all undergraduates should develop the ability to reason critically and communicate using the medium of language.

The requirement in Literacy and Critical Inquiry presumes, first, that training in literacy and critical inquiry must be sustained beyond traditional First Year English in order to create a habitual skill in every student; and, second, that the skill levels become more advanced, as well as more secure, as the student learns challenging subject matter. Thus, two courses beyond First Year English are required in order for students to meet the Literacy and Critical Inquiry requirement.

Most lower-level [L] courses are devoted primarily to the further development of critical skills in reading, writing, listening, speaking, or analysis of discourse. Upper-division [L] courses generally are courses in a particular discipline into which writing and critical thinking have been fully integrated as means of learning the content and, in most cases, demonstrating that it has been learned.

Notes:

- 1. ENG 101, 107 or ENG 105 must be prerequisites
- 2. Honors theses, XXX 493 meet [L] requirements
- 3. The list of criteria that must be satisfied for designation as a Literacy and Critical Inquiry [L] course is presented on the following page. This list will help you determine whether the current version of your course meets all of these requirements. If you decide to apply, please attach a current syllabus, or handouts, or other documentation that will provide sufficient information for the General Studies Council to make an informed decision regarding the status of your proposal.

Revised April 2014

Proposer: Please complete the following section and attach appropriate documentation.

= # -	ASU - [L] CRITERIA					
TO QU ON CO	JALIFY DMPLE	FOR [L] DESIGNATION,THE COURSE DESIGN MUST PLACE A TING CRITICAL DISCOURSEAS EVIDENCED BY THE FOLLO	MAJOR EMPHASIS WING CRITERIA:			
YES	NO		Identify Documentation Submitted			
\boxtimes		CRITERION 1: At least 50 percent of the grade in the course should depend upon writing assignments (see Criterion 3). Group projects are acceptable only if each student gathers, interprets, and evaluates evidence, and prepares a summary report. <i>In-class essay exams may not be used for [L] designation.</i>	Yes			
		ibe the assignments that are considered in the computation of course gradesand in hat is determined by each assignment.	ndicate the proportion of the			
2. Also	0:					
C-	Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading processand label this information "C-1".					
\boxtimes		CRITERION 2: The writing assignments should involve gathering, interpreting, and evaluating evidence. They should reflect critical inquiry, extending beyond opinion and/or reflection.	Yes			
1. Plea	ase descri	ibe the way(s) in which this criterion is addressed in the course design.				
2. Also	0:		i ^{et} value p			
C-	-2	Please circle, underline, or otherwise mark the information presented the most recent course syllabus (or other material you have submitted) verifies this description of the grading processand label this informa "C-2".) that			
		CRITERION 3: The syllabus should include a minimum of two writing and/or speaking assignments that are substantial in depth, quality, and quantity. Substantial writing assignments entail sustained in-depth engagement with the material. Examples include research papers, reports, articles, essays, or speeches that reflect critical inquiry and evaluation. Assignments such as brief reaction papers, opinion pieces, reflections, discussion posts, and impromptu presentations are not considered substantial writing/speaking assignments.	Yes			
cou						
2. Als	0:					
Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading processand label this information "C-3".						
C-3						

ASU - [L] CRITERIA							
YES	NO		Identify Documentation Submitted				
CRITERION 4: These substantial writing or speaking assignments should be arranged so that the students will get timely feedback from the instructor on each assignment in time to help them do better on subsequent assignments. Intervention at earlier stages in the writing process is especially welcomed.							
1000	Please describe the sequence of course assignmentsand the nature of the feedback the current (or most recent) course instructor provides to help students do better on subsequent assignments						
Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading processand label this information "C-4".							

Course Prefix	Number	Title	General Studies Designation
ChE	462	Process Design	L

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

Criteria (from checksheet)	How course meets spirit (contextualize specific examples in next column)	Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)
Criterion 1	The writing assignments (Project Reports 1 and 2 are counted 70% towards the final course grade). Project 1 is an individual effort & report. Project 2 is a team effort but each student "gathers, interprets, and evaluates evidence" and prepares and submit an individual report; moreover, Project 2 assignment specifically notes "that there will be some grading as a team but you will be mainly graded individually on your section of (contribution to) the report."	Please see the circled C-1 items on the last page of the attached course syllabus of 2013 and 2014, respectively. Also, please see the circled statements as C-1 in the actual project assignments of 2013 and 2014, respectively.
Criterion 2	The nature of the projects for the writing assignments are technical such as "Design for Produced Water Reclamation" (Project 1, 2013), "Design for Carbon Dioxice-Free Utilities" (Project 2, 2014), "Design for Reduced Semi-Tractor Trailer Vehicle Emission" (Project 1, 2014), and "Design for Water, Electricity and Environmenta Concerns (Project 2, 2014). These projects requires stduents developing critical thinking skills and "gathering, intepreting, and evaluaing evidences" and reflect "critical inquiry."	The original writing assignments of 2013 and 2014 are attached as whole as C-2.
Criterion 3	The course inclues assignments of two in-depth project written reports and one oral presentation	Please see the circled C-3 items on the last page of the attached course syllabus of 2013 and 2014, respectively. The original writing assignments of 2013 and 20144 are attached as C-3.

Criterion 4

The writing assignments starts with a designated lecture on "Report Writing Chapter 11)". In addition, there is a requirement to submit a "Project Progress Report" so the students can receive some feedback. Also, a report grading sheet is provided before each project report is due. There are required team meetings with the instructor before the second report and oral presentation. The course also includes a designated lecture on "how to give an oral presentation CH 11" before the oral presentaiton. An oral presentation grading sheet is provided to the students prior to the presentation itself. Finally, it is important to note that "the first report is graded by ME and returned to the class within a week - well ahead of the second report due date" (direct quote from the instructor).

Please see the circled C-4 items in the course syllabus of 2013 and 2014, respectively. Also, the report grading sheets are attached and labeled as C-4. Please see the circled statements as C-4 in the actual project assignments of 2013 and 2014, respectively. Please see see the grading sheet of 2013 and 2014 labeled as C-4. Please also see an email communication (labeled as C-4) between Dr. Lenore Dai, the Program Chair of Chemical Engineering and the Dr. James Beckman, the instructor of ChE 462. dated 1/8-1/9 2015.

Course Catalog Description

Course	Title		Units	GeneralStudies	
CHE 462	Process Design Applies economic principles design; development and de				
	Allow multiple enrollments: No	Primary course component: Lecture			
	Repeatable for credit: No	Grading method: Student Option			
	Offered by: Ira A. Fulton Schools of Engineering Chemical				
	Engineering Program Pre-requisites: Engineering CHE 433 with C or better Of				

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM SENIOR PROCESS DESIGN

CHE 462

Tentative Syllabus Spring 2014

Professor Beckman (J.R.BOSS) ERC 291/SCOB 194 9:00 – 9:50 AM 965-4395 SCOB 150 M,W,F

Office Hours 10:00 - 11:00AM M,W,F

<u>CHE 462:</u> Process Design. 3 credits. Application of economic principles to optimize equipment selection, sizing and cost(design) of process systems. Prereq. CHE 432, CHE 433, CHE442 and everything else except lab courses and control!

FORMAT: I'm your first boss and this is your first job. You will be a design engineer in a company that is contracted by a client needing design assistance.

Think of alternatives

On the job environment

Involving group interaction

<u>TEXTBOOK:</u> Peters, Timmerhaus, and West, *Plant Design and Economics for Chemical Engineers*, 5th Edition, McGraw-Hill, 2003

REFERENCES:

McCabe, Smith and Harriott, Unit Operations of Chemical Engineering, McGraw-Hill, 2001

Woods, Don Process Design and Engineering Practice with Data for Process Design and Engineering Practice, Prentice-Hall, 1995.

Rudd, Dale and Charles Watson, Strategy of Process Engineering, John Wiley, 1968.

Geankoplis, John, Transport Processes and Separation Process Principles, Prentice Hall, 2003.

Perry, ed, Chemical Engineers Handbook, all editions.

Seider, Seader and Lewin, Product & Process Design Principles, John Wiley, 2004.

TOPICS BY WEEK:

Week of

Topics

Jan 13 M; Introduction to Design, Generation of Alternatives (The Physics Exam) CH 1

W; process alternatives - example: ammonia production

Soft F: process alternatives – example: seawater desalination

Jan 20 M; Martin Luther King Jr B'Day – No Classes Held

W; Strategy of Process Engineering by D. Rudd/C. Watson, PROJECT 1 ASSIGNED

PROJECT 1 ASSIGNED Wednesday Jan 22: Carbon Dioxide Emissions Reductions for semi-Trailer rigs. Maximize ROI.SOLO (by yourself)

Soft F: cooling water towers – design and cost

Jan 27 M; show me the money - fundamental effects, CH 6, 7,8

W; Report Writing Chapter 1) PROGRESS MEMO DUE

Soft F: process examples p.67 etc Ch 3

C-4

Feb 3 M: heat transfer shell and tube/Reactors size and cost OX, olefins, NH3 CH 14

W: Tray Columns – size & cost CH 15

Soft F: Materials selection CH 10/Interviews

Feb 10M: Safety Concerns – HAZOP Analysis Ch2

W: PROJECT 1 FINAL REPORT DUE, PROJECT 2 ASSIGNED (teams)

PROJECT 2 ASSIGNED Wed Feb 12 (DESIGN FOR WATER, ELECTRICITY and the ENVIRONMENT)

ENVIRONMENTAL DREAM TEAM

Soft F; Plant Disasters – Examples, Flixborough etc

Feb 17: M: Crystallizers – size and cost (as a reactor kettle) CH13

W; Centrifugal Pumps – model, size and cost CH 12

Soft F; Corporate structure, Meetings

Feb 24 M: How to Give an Oral Presentation CH 11

W:/Team Meetings with JRBoss PROGRESS MEMO DUE

C-4

F: Team Meetings with JRBoss

Mar 3 M:/Team Meetings with JRBoss

W. Team Meetings with JRBoss

F: Team Meetings with JRBoss

C-4

Mar 10: SPRING BREAK (Break what? Wallets, bones?) or SPRING BRAKE (stop work?)

Mar 17 M: **RESEARCH** – chem. Labs - chlorination of PVC, sour burp, solar storage

W: **DEVELOPMENT** – pilot plants – KZ, KX, solar storage

Soft F: **DESIGN** – hydrogen sulfide recovery plant

Mar 24 M: PLANT OPERATION - trouble shooting - POX, control, environment,

W: PROJECT 2 DUE Oral presentations start

F: Oral presentations

Apr 7 M, W, F Oral Presentations

Apr 14 M, W, F Alumni Speakers

Apr 21 M, W, F Oral presentations

FINAL COURSE	GRADE
PROJECT 1 report PROGRESS memos (both)	30%) 10%
PROJECT 2 report Home Work	40% 10%
Oral Presentation	10% 100%

Reports are due on time – late reports will be docked by a-grade-a-day policy

Academic Integrity (ethics)- You paid good money to take this design course so you must adhere to the rules of conduct (AIChE ethics based p.13 PTW) in order to achieve the maximum benefit of critical thinking and technical report writing. This course is a prelude to your first job after graduation. Your boss will not tolerate any form of dishonesty and nor will I. In other words, do your own work as required.

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM SENIOR PROCESS DESIGN

CHE 462

Tentative Syllabus Spring 2013 REVISED

Professor Beckman BAC 215 ERC 291 9:00 – 9:50 AM 965-4395

M,W,F

Office Hours 10:00 - 11:00AM M,W,F

<u>CHE 462:</u> Process Design. 3 credits. Application of economic principles to optimize equipment selection, sizing and cost(design) of process systems. Prereq. CHE 432, CHE 433, CHE442 and everything else except labs and control courses!

FORMAT: I'm your first boss and this is your first job. You will be a design engineer in a company that is contracted by a client needing design assistance.

Think of alternatives

On the job environment

Involving group interaction

<u>TEXTBOOK:</u> Peters, Timmerhaus, and West, *Plant Design and Economics for Chemical Engineers*, 5th Edition, McGraw-Hill, 2003 (referred to as PTW)

REFERENCES:

Seader, Henley, Separation Process Principles, 2nd ed, John Wiley, 2006.

McCabe, Smith and Harriott, Unit Operations of Chemical Engineering, McGraw-Hill, 2001

Woods, Don Process Design and Engineering Practice with Data for Process Design and Engineering Practice, Prentice-Hall, 1995.

Rudd, Dale and Charles Watson, Strategy of Process Engineering, John Wiley, 1968.

Geankoplis, John, Transport Processes and Separation Process Principles, Prentice Hall, 2003.

Perry, ed, Chemical Engineers Handbook, all editions.

Seider, Seader and Lewin, Product & Process Design Principles, John Wiley, 2004.

TOPICS BY WEEK:

Week of

Topics

Jan 7 M; Introduction to Design, Generation of Alternatives (The Physics Exam) CH 1

W: Strategy of Process Engineering by D. Rudd/C. Watson

F; alternatives - Process synthesis CH 3 &4 example: lets make ammonia

Jan 14 M; show me the money – fundamental \$ effects, CH 6, 7.

W; Project 1 assigned (solo), review project 1 2012

s F; alternatives –example: seawater desalination, RO, MEE, MSF, VC, B&T, epsilon, tug PROJECT 1 ASSIGNED Wed Jan 16: FRACKING – Produced-Water Clean Up

Jan 21 M; MLK no classes held

W: Report Writing Chapter 11

C-4

s F; Corporate structure, meetings, interviews

Jan 28: M: speaker 1 – Mr. David Burroughs SDC materials corp

W: speaker 2 – Mr. Hank Hamblin SRP Progress Memo 1 due

F: speaker 3 – Ms. Stephanie Archabal ITSI Gilbane

c-4

Feb 4: M: speaker 4 – josh brown JACOBS

W; crystallizers CH 15 size and cost, PX plant, MSMPR, R-z, dryers, filter screens

F heat & mass transfer – water cooling tower mass transfer CH 15

Feb 11: M: tray columns size and cost

W: Project 1 final report due (individual) - Project 2 assigned (teams)

F: speaker 5 - Tammi Westall INTEL

PROJECT 2 ASSIGNED Wed Feb 13 ELECTRICAL ,WATER, AND FUELS PRODUCTION WITH ZERO NET CARBON DIOXIDE EMISSIONS ON PENINSULAS AND ISLANDS

DREAM TEAM

Feb 18 M; heat transfer reactors, shell and tube size and cost, furnaces CH 14,

W: materials selection, pumps and blowers CH 10,12

s F: (how to give an oral presentation CH 11)

Feb 25 M; **RESEARCH** – chem. Labs - chlorination of PVC, sour burp

W; **DEVELOPMENT** – pilot plants – KZ, KX, solar storage

s F; plant disaster examples – safety – calculations

Mar 4 M; **DESIGN** – hydrogen sulfide recovery plant, solar one night heat exchangers

W; PLANT OPERATION -trouble shooting – POX, control, environment, safety, ic4 Progress Memo 2 due

s F: project assistance in class

Mar 11 SPRING BREAK (Break what? Wallets, bones?) or SPRING BRAKE (stop work?)

Mar 18

M, W, F Group Design Review Meetings with JRB

C-4

Mar 25

M, W, F Group Design Review Meetings with JRB

Apr 1

M: PROJECT 2 DUE Oral Presentations Begin:

W, Oral presentations

F: Oral presentations?

Apr 8 M, W, F? Oral presentations continue

Apr 15 M, W, F? Oral presentations continue

Apr 22 M, W, F? Oral presentations continue

Apr 29 M; Oral presentations, final discussions (class meetings end when all presentations are finished)

COURSE GRADE			1 1 2
PROJECT 1 report	40%)	C	and C-3
PROGRESS memos (both)	20%		0 - 5
PROJECT 2 report	30%)	C-1	and C-3
Oral Presentation	10%	C-	
	100%		_

Reports are due on time – late reports will be docked by a-grade-a-day policy

Academic Integrity (ethics)- You paid good money to take this design course so you must adhere to the rules of conduct (AIChE ethics based p.13 PTW) in order to achieve the maximum benefit of critical thinking and technical report writing. This course is a prelude to your first job after graduation. Your boss will not tolerate any form of dishonesty and nor will I. In other words, do your own work as required.

Entire Assignment. C-2 and C-3

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM CHE 462

PROJECT 1 - INDIVIDUAL EFFORT & REPORT

C-1

VIPER Corp

TO: CHE 462 WORLD CLASS DESIGN ENGINEERS

FROM: J.R.Boss, Vice Pres, R&D, VIPER Corp

DATE: 1/22/14

SUBJECT: DESIGN FOR REDUCED SEMI-TRACTOR TRAILER VEHICLE

EMISSIONS

In 1997 an international meeting was held in Kyoto, Japan and 2012 in Doha, Bahrain to discuss the Global Warming trends(climate change) and remediation policies to curb carbon dioxide emissions. The climate change in global rising temperatures has also shifted the weather patterns throughout the world. A shift from conventional fuels to natural gas will significantly reduce carbon dioxide emissions. As an example, switching from diesel or gasoline to methane in transportation vehicles would reduce emissions by 25% for the same miles driven. Motor vehicles produce about 14% of the world carbon dioxide emissions so our attention will focus on CO2 emissions reduction in semi trailers.

We at Vehicle Improved Performance Engineering Retrofitters Corp (VIPER) have been contracted by Reduced Emissions for diesel Semi Trailers LLC (REST LLC) to explore possibilities of reduced carbon dioxide emissions per mile. The only possibility that can not be investigated is storing braking energy into electrical storage (already on the market). Take as a basis, 150,000 miles/year driven. Also you can take carbon dioxide emissions reduction at \$0.50/100MJ as a carbon credit.

You will work alone to explore the business venture details to be proposed by VIPER Corp to REST LLC which will reduce emissions in semi trailers. The project objective is to maximize incremental ROI. If needed, you can use a money borrowing rate of 5.4% with an equipment life of 17.4 years. This solo effort by 80 engineers will assure VIPER Corp of multitude design outcomes for future proposal consideration.

Your individual final design report must be on my desk (brought to class) by 9:00 AM Wednesday February 12, 2014.

Also, there will be a progress report due on Wednesday January 29 so as to help assure a strong steady pace of your dedicated participation.

C-4

Chemical Engineering CHE 462 ASU 2/12/14 FIRST REPORT GRADING SHEET

TECHNICAL EXPERTISE: 10 pts each = 50%

- 1. Identify contracting company of VIPER Corp.
- 2. Show that you followed the objective function.
- 3. Show that you can design a reasonable workable system.
- 4. Demonstrate life-long learning (WEB SITE references).
- 5. Solve problems involving contemporary issues(show evidence, news releases)

GRAMMAR 50% (spelling, sentence structure, technical writing guidelines, memo format)

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM CHE 462 G2+ C-2. Entire Priet.

PROJECT 2 - Team Effort

Individual reports combine to form the team report

c-1

WEEP Inc

TO: CHE 462 CRÈME DE LA CRÈME DESIGN ENGINEERS

FROM: J. R. Boss, Board Chair, President and CEO, WEEP Inc

DATE: 2/12/14

SUBJECT: DESIGN FOR WATER, ELECTRICITY and ENVIRONMENT CONCERNS

The CaliZona Research Academy Partners has contracted with us here at WATER ENERGY and ENVIRONMENTAL PROCESSING Inc (WEEP Inc) to explore the **economic feasibility (Maximize Return on Investment)** of improving the environment in California and Arizona. Projects of particular interest include:

- 1. Reduction of water consumption/kWh in Arizona electrical power generating stations
 - o How much water is consumed per kWh?
 - o Where in the plant is the water used (consumed or discharged)?
 - Water constant but increase electrical generation?
 - O Select your piece of the project pie
- 2. Reduction of salt content in the Salton Sea
 - o Salt is over 4.5wt% reduce to ocean salinity
 - o What to do with the salt? Haul away? Sell? Bury?
 - o Rate of cleaning?
 - o Select your piece of the project pie
- 3. Supplying potable water from the Sea of Cortez to Phoenix
 - o Desalinate the ocean?
 - o Pipe transport? Canal flow?
 - o Tucson deal/exchange?
 - o Select your piece of the project pie
- 4. Harvest methane clathrates from the West coast continental shelf- make electricity and supply dry 1000psi methane gas to California
 - o Clathrates/hydrates? Guest molecule?
 - o No carbon dioxide emissions. Sequester methods?
 - o Select your piece of the project pie
- 5. Turning landfill garbage into electricity and methane
 - o Pressure?
 - o Dehydrate methane?
 - o Compress to 1000psi?

- o Dehydrate methane?
- o Carbon dioxide removal? Sequester?

Various resources are available for your consideration. Resources include but are not limited to solar, wind, waves, tidal action, ocean water, ocean depth, ocean chemical components, land elevation and so forth. Electrical sales can be made locally at US\$ 0.15/kWh). Water values are set at \$4.00/1000 gallons (US\$ 1.00/cuM) and methane can be sold at \$0.50/therm. Equipment purchases will be based on PTW design text unless otherwise agreed to by JRBoss. Land cost needed for the plant site will be locally valued. Calculations must include amortized equipment and land costs. You can use a money borrowing rate of 4.5% with an equipment life of 23 years.

Find news releases concerning your topic. The articles will establish a keen interest in and a need for this most exciting project!

You will assemble into teams of four members and start your brain storming NOW. Having 21 teams will help assure that WEEP Inc. can deliver to CaliZona many possible choices for the future consideration. **Today:**

- give me a memorandum (all team members names and name of the team.
- Receive your team assignment from JR Boss)
- Give me a memo that reflects your initial brain storming. Also give insight into how the team will divide up individual responsibilities in solving the open ended design problem. Note that there will be some grading as a team but you will be mainly graded individually on your section of (contribution to) the project.

9-1

Your final design report must be on my desk by 9:00 AM Monday March 31, 2014. Also, there will be a progress report due on Monday February 24 to help assure an active start and a strong steady pace of your dedicated participation.

-4

C-4

Chemical Engineering CHE 462 ASU 3/31/14 SECOND REPORT GRADING SHEET

TECHNICAL EXPRESSION: 5 pts each = 50%

- 1. Can function on multidisciplinary teams (che4.1) (state team interaction)
- 2. Have knowledge of ethics & professionalism (che 4.4) (a brief paragraph how you did your own work and note others help)
- 3. Understand impact of solution on society(che 4.3) (your work)
- 4. Demonstrate life-long learning (WEB references) (che 5.1)
- 5. Have knowledge of contemporary issues(show evidence, news releases of water, electricity and/or fuels needs). (che 4.4)
- 6. Can design, analyze, and control processes (8) (detailed calculations in appendix)
- 7. Can follow the objective function (max ROI)
- 8. Copies of all Oral Presentation slides
- 9. Perform HAZOP analysis on one process entity
- 10. Team name and team members

GRAMMAR &TECHNICAL DETAILS 50% (spelling, sentence structure, memo format, clarity, knowledgeable, accuracy)

CHE 462 ORAL GRADING SHEET 2014 STUDENT

Clarity of text and approach what was done, why and how

2. Presentation of Results

key results, significance

Knowledge of topic explanations, answers to questions

4. Speaking effectiveness
Articulation/Vocabulary
Speech volume and speed
Audience eye contact

5. Visual Aids Effectiveness

Outlines, summary, Figures, Tables

CHE 462 ORAL GRADING SHEET 2014 STUDENT

Clarity of text and approach what was done, why and how

2. Presentation of Results

key results, significance

3. Knowledge of topic

explanations, answers to questions

4. Speaking effectiveness

Articulation/Vocabulary
Speech volume and speed
Audience eye contact

5. Visual Aids Effectiveness

Outlines, summary, Figures, Tables

10 points for each category then times 2 for grade

10 points for each category then times 2 for grade

C-2 + C=2. Entire Assignment

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM CHE 462

PROJECT 1 - INDIVIDUAL EFFORT & REPORT

C-1

L'Eau Co.

TO: CHE 462 WORLD CLASS DESIGN ENGINEERS

FROM: J.R.Boss, Vice Pres, R&D, L'Eau Co.

DATE: 1/16/13

SUBJECT: DESIGN FOR PRODUCED WATER RECLAMATION

In 1997 an international meeting was held in Kyoto, Japan and 2012 in Doha, Bahrain to discuss the Global Warming trends and remediation policies to curb carbon dioxide emissions. The climate change in global rising temperatures has also shifted the weather patterns throughout the world. A shift from conventional fuels to natural gas will significantly reduce carbon dioxide emissions. As examples, switching from gasoline to methane in transportation vehicles would reduce emissions by 25% for the same miles driven. Switching from coal to methane in electric power generating plants would save over 50% of carbon dioxide emissions while producing the same amount of electricity. The newly tapped methane resource has been identified in underground shale formations throughout the United States. The method for mining the natural gas is called hydraulic fracturing or fracking. However, fracking is accompanied by water pollution issues.

The Fracking American Natural Gas Inc (FANG Inc) currently produces methane with 100,000 gallons/day of produced water which costs \$0.13/gallon to be hauled away. The produced water essentially contains 6wt% sodium chloride, 1wt% ethanol, and 1.3wt% acetic acid. We at L'Eau Co. are proposing to take care of the FANG Inc water problem for them at our cost to them of \$0.06/gallon thereby saving FANG Inc almost \$3 million/year.

You will work alone to explore the business venture details to be proposed by L'Eau Co. which will reduce the amount of produced water that must be disposed of at \$0.13/gallon. Potable water made in this venture can be sold at \$2/1000 gallons and organics must be disposed of or sold as a by-product(s). The project objective is to maximize ROI. Use a money borrowing rate of 5.4% with an equipment life of 17.4 years. The solo effort will assure L'Eau Co. of multitude design outcomes for proposal consideration.

Your individual final design report must be on my desk by 9:00 AM Wednesday February 13, 2013. Also, there will be a progress report due on Wednesday January 30 so as to help assure a strong steady pace of your dedicated participation.

C-4

Chemical Engineering CHE 462 ASU 2/13/13 FIRST REPORT GRADING SHEET

TECHNICAL EXPERTISE: 10 pts each = 50%

- 1. Identify contracting company of L'Eau Co.
- 2. Show that you followed the objective function
- 3. Show that you can design a reasonable workable process
- 4. Demonstrate life-long learning (WEB SITE references)
- 5. Solve problems involving contemporary issues(show evidence, news releases)

GRAMMAR 50% (spelling, sentence structure, technical writing guidelines, memo format)

C-2+ C-3: Entire Assignment

ARIZONA STATE UNIVERSITY CHEMICAL ENGINEERING PROGRAM CHE 462

PROJECT 2 – Team Effort
Individual reports combine to form the team report

C-1

GRIPE Inc

TO: CHE 462 CRÈME DE LA CRÈME DESIGN ENGINEERS

FROM: J. R. Boss, Board Chair, President and CEO, GRIPE Inc

DATE: 2/13/13

SUBJECT: DESIGN FOR CARBON DIOXIDE-FREE UTILITIES

The Peninsula And Island Necessities LLC(PAIN LLC) has contracted with us here at Grass Roots International Process Engineering Corp (GRIPE Inc) to explore the **economic feasibility (Maximize Return on Investment)** of producing electricity (24 hr/day), liquid fuel, gaseous fuel and potable water with no carbon dioxide emissions. PAIN LLC is particularly interested in the island and peninsula regions throughout the world. The electrical generating station will be sized as a net 10MWe facility for 24 hours operation. Water will be produced at a rate of 5000 BBL/day. Liquid fuel regulations require 100BBL/day or Gaseous fuels demand is 10,000 SCF/day.

You are to select a specific site for the combined facility on an assigned peninsula or island. Various resources are available for your consideration. Resources include but are not limited to solar, wind, waves, tidal action, ocean water, ocean depth, ocean chemical components, land elevation and so forth. Electrical sales can be made locally at US\$ 0.13/kWh). Water sales are set at \$3.00/1000 gallons (US\$ 0.75/cuM). Equipment purchases will be based on PTW design text unless otherwise agreed to by JRBoss. Land cost needed for the plant site will be locally valued. Calculations must include amortized equipment and land costs. Use a money borrowing rate of 4.5% with an equipment life of 23 years.

Find news releases concerning the world wide water, gaseous fuels, liquid fuels and electrical needs and shortages. The articles will establish a keen interest in and a need for this most exciting project!

You will assemble into teams of four members and start your brain storming NOW. Having 19 teams will help assure that GRIPE Inc. can deliver to PAIN LLC many possible choices for the future plant facility. Today, give me a memorandum (all team members names and name of the team) that reflects your initial brain storming. Also give insight into how the team will divide up individual responsibilities in solving the

open ended design problem. Note that there will be some grading as a team but you will be mainly graded individually on your section of (contribution to) the project.

Your final design report must be on my desk by 9:00 AM Monday April 1, 2013. Also, there will be a progress report due on Monday March 4 to help assure an active start and a strong steady pace of your dedicated participation.

--4

Chemical Engineering CHE 462 ASU 4/1/13 SECOND REPORT GRADING SHEET

TECHNICAL EXPRESSION: 5 pts each = 50%

- 1. Can function on multidisciplinary teams (che4.1) (state team interaction)
- 2. Have knowledge of ethics & professionalism (che 4.4) (a brief paragraph how you did your own work and note others help)
- 3. Understand impact of solution on society(che 4.3) (your work)
- 4. Demonstrate life-long learning (WEB references) (che 5.1)
- 5. Have knowledge of contemporary issues(show evidence, news releases of water, electricity and/or fuels needs). (che 4.4)
- 6. Can design, analyze, and control processes (8) (detailed calculations in appendix)
- 7. Can follow the objective function (max ROI)
- 8. Copies of all Oral Presentation slides
- 9. Perform HAZOP analysis on one process entity
- 10. Team name and team members

GRAMMAR &TECHNICAL DETAILS 50% (spelling, sentence structure, memo format, clarity, knowledgeable, accuracy)

200

CHE 462 ORAL GRADING SHEET STUDENT

- 1. Clarity of text and approach what was done, why and how
- Presentation of Results key results, significance
- 3. Knowledge of topic
 explanations, answers to questions
- Speaking effectiveness
 Articulation/Vocabulary
 Speech volume and speed
 Audience eye contact
- Visual Aids EffectivenessOutlines, summary, Figures, Tables

CHE 462 ORAL GRADING SHEET STUDENT

- Clarity of text and approach what was done, why and how
- Presentation of Results key results, significance
- 3. Knowledge of topic
- explanations, answers to questions

 . Speaking effectiveness
- 4. Speaking effectiveness Articulation/Vocabulary Speech volume and speed Audience eye contact
- Visual Aids Effectiveness
 Outlines, summary, Figures, Tables

Lenore Dai

C-4

From:

James Beckman

Sent:

Friday, January 09, 2015 8:57 AM

To:

Lenore Dai

Subject:

RE: General Studies Courses Losing Designations AND Major Maps

yes. the first report is graded by ME and returned to the class within a week - well ahead of the second report due date. jim

From: Lenore Dai

Sent: Thursday, January 08, 2015 4:32 PM

To: James Beckman

Subject: RE: General Studies Courses Losing Designations AND Major Maps

Wonderful and thank you so much! Would it be possible to me to say something like that the first project report was graded and returned to the students prior to the submission of the second project report? Thanks again!!!

Plant Design and Economics for Chemical Engineers

Fifth Edition

Max S. Peters Klaus D. Timmerhaus Ronald E. West

University of Colorado

Besich Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Man Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

CONTENTS

Preface xv	Development of a Pollution Control System 42				
Prologue xix	Air Pollution Abatement 42				
	Water Pollution Abatement 47				
	Solid Waste Disposal 50				
CHAPTER 1	Thermal Pollution Control 51				
Introduction 1	Noise Control 52				
Chemical Engineering Plant Design 1	Plant Location 52				
General Overall Design Considerations 2	Factors Involved 53				
Process Design Development 2	Selection of the Plant Site 56				
Flowsheet Development -5	Plant Layout 56				
Computer-Aided Design 6	Preparation of the Layout 57				
Cost Estimation 6	Plant Operation and Control 57				
Profitability Analysis of Investments 7	Instrumentation 57				
Optimum Design 8	Maintenance 58				
Practical Considerations in Design 11	Utilities 59				
The Design Approach 12	Structural Design 60				
Engineering Ethics in Design 13	Storage 60				
Ligitoottig Stilled III. See St.	Materials Handling 61				
CHAPTER 2	Patent Considerations 62				
General Design Considerations 15	Problems 62				
Health and Safety Hazards 15					
Sources of Exposure 16	CHAPTER 3				
Exposure Evaluation 18	Process Design Development 67				
Control of Exposure Hazards 20	Development of Design Database 67				
Fire and Explosion Hazards 22	Literature Survey 68				
Personnel Safety 27	Patent Search 69				
Safety Regulations 27	Process Creation 69				
Loss Prevention 29	Batch Versus Continuous Operation 70				
HAZOP Study 29	Raw Materials and Product				
Fault-tree Analysis 35	Specifications 70				
Failure Mode and Effect Analysis 36	Process Synthesis Steps . 71				
Safety Indexes 36	Process Design 72				
Safety Audits 36	Types of Process Designs 74				
Environmental Protection 40	Process Flow Diagrams 77				
Environmental Regulations 41	Piping and Instrumentation Diagrams 79				

Vessel and Piping Layout Isometrics 80	Process Flowsheet 149
Equipment Design and Specifications 81	Reactors 149
Scale-up of Equipment in Design 81	Mass and Energy Balances 149
Safety Factors 81	Separation Trains 149
Equipment Specifications 84	Heat Exchange 150
Materials of Construction 86	Algorithmic Flowsheet Generation 158
The Preliminary Design—A Specific Example 87 Problem Statement 87	Fundamentals of Algorithmic Process-Network Synthesis 159
Literature Survey 87 Process Creation 88	Application of Algorithmic Process-Netwerk Synthesis 165
Development of Conventional Base-Case Design 90	Comparison of Hierarchical and
Economic Assessment of Base-Case Design 110	Algorithmic Results 189
Assessment of Proposed Base-Case Design	Genetic Algorithms 189
Modification 113	Future Approaches to Flowsheet Synthesis
Summary 120	and Development 190
Problems 121	Software Use in Flowsheet Synthesis 190
	Analysis and Evaluation of Flowsheets 190
CHAPTER 4	Criteria for Evaluating Designs 190
Flowsheet Synthesis and	Summary 192
Development 125	Nomenclature 192
Flowsheet Synthesis and Development 126	Greek Symbol 193
General Procedure 126	Problems 193
Process Information 130	
Background Information 130	CHAPTER 5
Molecular Path Synthesis 131	Software Use in Process
Selecting a Process Pathway 132	Design 196
Production Mode 132	Software Structure 198
Recording Decisions 133	Chemical Property Estimation 198
Input/Output Structure 135	Process Equipment Models 201
Functions Diagram 137	Process Equipment Cost Estimation 202
Preprocessing 138	Process Economic Evaluation 203
Reactions 139	Heat Integration 203
Recycle 139	Process Control 203
By-products, Intermediates, and Wastes 139	Process Optimization 204
Separations 140	Software Capabilities 204
Operations Diagram 143	General-Type Software 205
Preprocessing 143	Software for Process Design 208
Reactors 143	Molecular Reaction Databases and Simulators
Separations Methods 144	Chemical Cost Databases 209
Heating and Cooling 145	Flowsheeting Software 209
Minimization of Processing 145	Unit Operations Simulators 211

Piping System Design 214	Yard Improvements 246
Plant Layout 214	Service Facilities 246
Economic Evaluation 215	Health, Safety, and Environmental
Software Selection 216	Functions 247
Software Use 216	Land 248
Physical Property Estimation Guidelines 217	Engineering and Supervision 248
Process Simulation Guidelines 217	Legal Expenses 248
Avoiding Pitfalls in Software Use 220	Construction Expenses 248
Graphic Interface and Ease of Use 221	Contractor's Fee 249
Thermodynamic Property Packages 222	Contingencies 249
Simulation Realism 222	Methods for Estimating Capital Investment 249
Evaluation of Software Results 224	Estimation of Revenue 258
	Estimation of Total Product Cost 259
_	Manufacturing Costs 262
CHAPTER 6	Variable Production Costs 262
Analysis of Cost Estimation 226	Plant Overhead Costs 270
Cash Flow for Industrial Operations 226	General Expenses 270
Cash Flow 226	Gross Profit, Net Profit, and Cash Flow 271
Cumulative Cash Position 228	Contingencies 272
Factors Affecting Investment and	Summary 272
Production Costs 230	Nomenclature 274
Sources of Equipment 230	Greek Symbol 275
Price Fluctuations 230	Problems 275
Company Policies 230	
Operating Time and Rate of Production 231	CHAPTER 7
Government Policies 232	Interest, Time Value of Money,
Capital Investment 232	Taxes, and Fixed Charges 279
Fixed-Capital Investment 233	
Working Capital 233	Interest 279
Estimation of Capital Investment 233	Simple Interest 280
Types of Capital Cost Estimates 235	Compound Interest 280
Cost Indexes 236	Nominal and Effective Interest Rates 281 Continuous Interest 283
Cost Components in Capital Investment 239	
Purchased Equipment 241	Cost of Capital 285
Estimating Equipment Costs by Scaling 242	Income Tax Effects 286
Purchased-Equipment Delivery 244	Loan Payments 287
Purchased-Equipment Installation 244	Time Value of Money 290
Instrumentation and Controls 245	Cash Flow Patterns 292
Piping 245	Discrete Cash Flows 292
Electrical Systems 246	Continuous Cash Flows 294
Buildings 246	Compounding and Discounting Factors 297

Income Taxes 303

Contents

Federal V management	Replacements 348
Federal Income Taxes 304 Taxable Income 304	Methods of Profitability Evaluation for Replacements 349
Capital Gains Tax 305	Typical Example of Replacement Policy 349
Losses 306	Book Values and Unamortized Values 350
Other Federal Taxes 306	Investment on Which the Replacement Comparis
State Taxes 306	Is Based 350
Nonincome Taxes 306	Practical Factors in Alternative-Investment and
Fixed Charges 307	Replacement Analysis 352
Depreciation 307	Nomenclature 352
Depreciation and Income Tax 308	Greek Symbol 353
Depreciable Investments 309	Problems 353
Current Value 309	
Salvage Value 309	CHAPTER 9
Recovery Period 309	Optimum Design and Design
Methods for Calculating Depreciation 310	Strategy 358
Insurance 313	
Self-insurance 314	Defining the Optimization Problem 359
Nomenclature 315	Selecting an Objective Function 361
Greek Symbol 316	Structural Optimization 361
Problems 316	Parametric Optimization 362
	Variable Screening and Selection 363
CHAPTER 8	Suboptimization 363
Profitability, Alternative Investments	Practical and Intangible Considerations 364
and Replacements 319	Programming Optimization Problems 364
	Linear Programming 367
Profitability Standards 320	Generalization of Strategy for Linear
Cost of Capital 320	Programming 370
Minimum Acceptable Rate of Return 321	Simultaneous Equations 372
Methods for Calculating Profitability 322	Nonlinear Programming 373
Methods That Do Not Consider the Time Vulue	Dynamic Programming 377
of Money 322	Optimization Solution Methodologies 379
Methods That Consider the Time Value	Procedure with One Variable 380
of Money 327	Procedure with Two or More Variables 381
Selecting a Profitability Method 330	Breakeven Chart for Optimum Analysis of
Effect of Inflation on Profitability Analysis 335 Start-up Costs 340	Production 384
	Experimental Design and Analysis of Process
Spreadsheet for Economic Evaluation Calculations 340	Simulations 384
Alternative Investments 340	Algorithm Solutions to Optimization Problems 386
Alternatives When an Investment Must	Optimization Applications 390
Be Made 342	Optimization Application: Optimum Production
Analysis with Small Investment Increments 346	Rates in Plant Operation 390

Replacements 348

Optimization Application: Economic Pipe
Diameter 401
Optimization Application: Cooling Water
Flow Rate 406
Optimization Application: Distillation
Reflux Ratio 409
Optimization Application: Pinch Technology
Analysis 414
Nomenclature 433
Greek Symbols 435

CHAPTER 10

Problems 435

Materials and Fabrication Selection 440

Factors Contributing to Corrosion 440
Combating Corrosion 443
Properties of Materials 444
Ferrous Metals and Alloys 444
Nonferrous Metals and Alloys 450
Inorganic Nonmetals 451
Organic Nonmetals 452
Low- and High-Temperature Materials 455
Gasket Muterials 457

Tabulated Data for Selecting Materials of Construction 457
Selection of Materials 457
Economics Involved in Selection 464
Fabrication of Equipment 465
Methods of Fabrication 466
Problems 467

CHAPTER 11

Written and Oral Design Reports 469

Written Reports 470

Organization of a Written Report 470

Preparing the Report 473

Presenting the Results 474

Comments on Common Errors 480

Checklist for the Final Report 481

Oral Reports 481

Organization and Presentation of an Oral Design

Report 482

Problems 484

CHAPTER 12

Materials-Handling Equipment— Design and Costs 485

Basic Concepts of Fluid Transport 485 Newtonian Fluids 486 Non-Newtonian and Bingham Fluids 488 Vacuum Flow 489 Frictional Losses Encountered in Pipelines 491 Power Requirements for Transport of Liquids and Gases 492 Piping in Fluid Transport Processes 497 Selection of Piping Materials 497 Design of Piping Systems 499 Costs for Piping and Piping System Auxiliaries 502 Pumping of Fluids 508 Selection of Pumps 508 Design Procedures for Pumps 515 Costs for Pumps and Motors 516 Compression and Expansion of Fluids 520 Selection of Compressors 520 Selection of Fans and Blowers 523 Selection of Vacuum System Equipment 524 Selection of Turbines, Expanders, and Other Drivers 525 Design Procedures for Compressors 527 Design Procedures for Turbines and Expanders 529 Costs for Compressors, Fans, Blowers, and Expanders 531 Selection of Agitators and Mixers 536

Agitation and Mixing of Fluids 536

Selection of Agitators and Mixers 530

Design Procedures for Agitators and Mixers 539

Costs for Agitators and Mixers 544

Flow Measurement of Fluids 549

Storage and Containment of Fluids 552 Design Procedures for Pressure Vessels 553 Costs for Tanks, Pressure Vessels, and Storage Equipment 553 Transport of Solids 560 Selection of Solids Transport Equipment 561 General Design Procedures for Solids Transport Equipment 565 Costs for Solids Transport Equipment 572 Handling of Solids 572 Selection of Solids-Handling Equipment 577 General Design Procedures for Solids-Handling Equipment 580 Costs for Solids-Handling Equipment 582 Nomenclature 587 Greek Symbols 589 Problems 589

CHAPTER 13

Reactor Equipment—Design and Costs 592

Reactor Principles 594

Reactor Types 596

Space Velocity and Space Time 597

Batch Reactors 597

Tubular Plug-Flow Reactors 598

Back-Mix Reactors 599

Nonideality of Reactors 599

Accounting for Reactor Nonideality 600

Residence Time Distribution 600

Nonideal Reactor Emulation Using Ideal Reactor Combinations 601

Recycle Reactors 602

Development of Chemical Reaction Rate

Expressions 605

Types of Reactions 606

Reaction and Reactor Performance 613

Parallel Reactions 613

Series Reactions 614

Systems of Identical Multiple Reactors 614

Reactor and Catalyst Equipment 616

Selection of Catalyst 616

Types of Reactors 617

Selection of Reactors 621

Design of Reactor Systems 622

Reactor Design Procedure 626

Software 626

Costs for Reactor Equipment 627

Summary 634

Nomenclature 635

Greek Symbols 636

Problems 637

CHAPTER 14

Heat-Transfer Equipment— Design and Costs 642

Basic Theory of Heat Transfer in Exchangers 643
Steady-State Heat-Transfer Considerations 644
Alternative Approaches to Heat Exchanger
Performance 652

Determination of Heat-Transfer Coefficients 656

> Film Coefficients for Fluids Flowing Inside of Pipes and Tubes (No Phase Change) 657 Film Coefficients for Fluids Flowing Outside of Pipes and Tubes (No Phase Change) 659 Film Coefficients and Overall Coefficients for Various Heat-Transfer Situations 661

Determination of Pressure Drop in Heat Exchangers 664

Tube-Side Pressure Drop 664 Shell-Side Pressure Drop 665

Selection of Heat Exchanger Type 669

Key Heat Exchanger Types Available 670

Preliminary Selection of Heat Exchanger
Types 676

Costs of Heat Exchangers 676

Design of Key Heat Exchanger Types 694

Double-Pipe and Multiple Double-Pipe
Exchangers 696

Shell-and-Tube Exchangers 702

Plate Exchangers 724 Compact Exchangers 729 Air-Cooled Exchangers 733 Condensers 734 Evaporators 737 Optimum Design of Heat Exchangers 738 General Case 739 General Methods for Design of Heat Exchangers 744 Nomenclature 745 Greek Symbols 748 Problems 749

CHAPTER 15

Separation Equipment—Design and Costs 754

Selection of Suitable Separation Processes 755

Guidelines for the Separation Process Selection 757

Equipment Design and Costs for Separating Homogeneous Mixtures 769

Separation by Distillation 769

Distillation Design Procedures for Columns with Sieve Trays 769

Distillation Design Procedures for Columns with Random Packing 783

Distillation Design Procedures for Columns with Structured Packing 787

Rating of Distillation Equipment 788

Rigorous Design Methods for Multicomponent Distillation 788

Design Procedures for Other Distillation Processes 789

Equipment Costs for Tray and Packed Columns 792

Separation by Absorption and

Stripping 797

Design Procedures for Trayed Columns Separating Dilute Solutes 799

Design Procedures for Packed Columns Separating Dilute Solutes 802

Design Procedures for Packed Columns Separating Concentrated Solutes 803

Separation by Extraction 804

Equipment Selection for Liquid/Liquid Extraction 804

Design Procedures for Liquid/Liquid Extraction 806

Equipment Costs for Liquid/Liquid Extraction Equipment 814

Separation Using Membranes 814

Selection of Membrane Types 814

General Design Concepts for Membrane Separation 815

General Design Procedures for Membrane Separation 820

Range of Costs for Several Membrane Systems 824

Separation by Adsorption 824

Selection of Sorbent for Separation by Adsorption 825

Basic Adsorption Cycles 827

Selection of Appropriate Adsorption Cycle 829

General Design Concepts for Separation by Adsorption 830

Costs for Adsorption Equipment 837

Equipment Design and Costs for Separating Heterogeneous Mixtures 837

Separation by Drying 839

Equipment Selection for Drying Solids 839

General Design Procedures for Drying 842

Costs for Typical Drvers 845

Separation by Filtration 851

Selection of Filtration Equipment 851

General Design Procedures for Separation

by Filtration 854

Costs for Filtration and Other Solids Separation Equipment 863

Nomenclature 869

Greek Symbols 872

Problems 873

APPENDIX A:

The International System (SI) of Units 877

APPENDIX B:

Auxiliary, Utility, and Instrumentation Cost Data 890

APPENDIX C:

Design Problems 899

APPENDIX D:

Tables of Physical Properties and Constants 947

APPENDIX E

Heuristics for Process Equipme Design 966

APPENDIX F:

Software Useful for Design 97

Author Index 976 Subject Index 979 Because applied economics and plant design deal with practical applications of chemical engineering principles, a study of these subjects offers an ideal way for tying together the entire field of chemical engineering. The final result of a plant design may be expressed in dollars and cents, but this result can only be achieved through the application of various theoretical principles combined with industrial and practical knowledge. Both theory and practice are emphasized in this book, and aspects of all phases of chemical engineering are included.

The authors are indebted to the many industrial firms and individuals who have supplied information and comments on the material presented in this edition. The authors also express their appreciation to the following reviewers who have supplied constructive criticism and helpful suggestions on the presentation for this edition: Luke Achenie, University of Connecticut; Charles H. Barron, Clemson University; James R. Beckman, Arizona State University; David C. Drown, University of Idaho; Stemar Hauan, Carnegie Mellon University; Marianthi Ierapetritou, Rutgers University; Jan A. Puszynski, South Dakota School of Mines and Technology; Johannes Schwank, University of Michigan; Thomas L. Sweeney, Ohio State University; Eric J. Thorgerson, Northeastern University; and Bruce Vrana, Dupont Engineering Technology.

Acknowledgment is made to Barr Halevi, HBarr, Inc., for his many contributions to the text and his preparation of Chap. 5 and much of Chap. 13. Special thanks are also expressed to L. T. Fan, Kansas State University, and F. Friedler, Veszprem University, for their preparation of the "Algorithmic Flowsheet Generation" section in Chap. 4. The assistance in typing of the manuscript by Cynthia Ocken, CSLR University of Colorado, and Ellen Romig, chemical engineering department, University of Colorado, is greatly appreciated.

Max S. Peters Klaus D. Timmerhaus Ronald E. West