ASI
 Arizona State University
 GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:

Copy and paste current course information from Class Search/Course Catalog.

Academic Unit	Informati			Department	CIDSE		
Subject CPI	Number	111	Title	Game Developm		Units:	3

Is this a cross-listed course? No
If yes, please identify course(s)
Is this a shared course? No If so, list all academic units offering this course
Course description:
Introduces video game design, art theory, and concepts as they apply to video game development. Basic art principles used in game development. Covers the fundamental video game art principles of 2-D and 3-D composition, color theory, modeling, and lighting techniques. Demonstrates practical application of these art fundamentals in establishing style guides, concept art, storyboards, and in-game assets. Also includes game design, game production, asset production, and game programming. Hands-on experience by creating 2-D game prototypes belonging to different video game genres and evaluating the techniques.
Requested designation: Mathematical Studies-CS
Note- a separate proposal is required for each designation requested

Eligibility:

Permanent numbered courses must have completed the university's review and approval process.
For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu.
Submission deadlines dates are as follow:
For Fall 2015 Effective Date: October 9, 2014 For Spring 2016 Effective Date: March 19, 2015

Area(s) proposed course will serve:

A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:

Complete and attach the appropriate checklist

- Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/statistics/quantitative applications core courses (CS)
- Humanities, Arts and Design core courses (HU)
- Social-Behavioral Sciences core courses (SB)
- Natural Sciences core courses (SQ/SG)
- Cultural Diversity in the United States courses (C)
- Global Awareness courses (G)
- Historical Awareness courses (H)

A complete proposal should include:

\boxtimes Signed General Studies Program Course Proposal Cover Form
Criteria Checklist for the area
Course Catalog description
Course Syllabus
\boxtimes Copy of Table of Contents from the textbook and list of required readings/books
Respectfully request that proposals are submitted electronically with all files compiled into one
PDF. If necessary, a hard copy of the proposal will be accepted.
Contact information:

Name	Brian Nelson	Phone	480-965-0383
Mail code 8809	E-mail:	Brian.Nelson@asu.edu	

Department Chair/Director approval: (Required)

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/ 12/11, 7/12, 5/14

Arizona State University
Chair/Director name (Typed): Ron Askin Date: 1/27/15
Chair/Director (Signature):

Arizona State University Criteria Checklist for

MATHEMATICAL STUDIES [CS]

Rationale and Objectives

The Mathematical Studies requirement is intended to ensure that students have skill in basic mathematics, can use mathematical analysis in their chosen fields, and can understand how computers can make mathematical analysis more powerful and efficient. The Mathematical Studies requirement is completed by satisfying both the Mathematics [MA] requirement and the Computer/Statistics/Quantitative Applications [CS] requirement explained below.

The Mathematics [MA] requirement, which ensures the acquisition of essential skill in basic mathematics, requires the student to complete a course in College Mathematics, College Algebra, or Pre-calculus; or demonstrate a higher level of skill by completing a mathematics course for which a course in the above three categories is a prerequisite.

The Computer/Statistics/Quantitative Applications [CS] requirement, which ensures skill in real world problem solving and analysis, requires the student to complete a course that uses some combination of computers, statistics, and/or mathematics.* Computer usage is encouraged but not required in statistics and quantitative applications courses. At a minimum, such courses should include multiple demonstrations of how computers can be used to perform the analyses more efficiently.
*CS does not stand for computer science in this context; the "S" stands for statistics. Courses in computer science must meet the criteria stated for CS courses.

Proposer: Please complete the following section and attach appropriate documentation.

ASU--[CS] CRITERIA

ASU--[CS] CRITERUA				
A COMPUTER/STATISTICS/QUANTITATIVE APPLICATIONS [CS] COURSE MUST SATISFY ONE OF THE FOLLOWING CRITERIA: 1, 2, OR 3				
YES	NO			Identify Documentation Submitted
1. Computer applications*: courses must satisfy both \mathbf{a} and \mathbf{b} :				
Δ			rse involves the use of computer programming uages or software programs for quantitative ysis, algorithmic design, modeling, simulation, nation, or statistics.	Course Syllabus and schedule
b. Course requires students to analyze and implement procedures that are applicable to at least one of the following problem domains (check those applicable):				
		i. Spreadsheet analysis, systems analysis and design, and decision support systems.		
\searrow		ii. Graphic/artistic design using computers.		Course Syllabus and schedule
		iii. Music design using computer software.		
			Modeling, making extensive use of computer simulation.	
	v. Statistics studies stressing the use of computer software.			
\triangle			Algorithmic design and computational thinking.	Course Syllabus and schedule

*The computer applications requirement cannot be satisfied by a course, the content of which is restricted primarily to word processing or report preparation skills, the study of the social impact of computers, or methodologies to select software packages for specific applications. Courses that emphasize the use of a computer software package are acceptable only if students are required to understand, at an appropriate level, the theoretical principles embodied in the operation of the software and are required to construct, test, and implement procedures that use the software to accomplish tasks in the applicable problem domains. Courses that involve the learning of a computer programming language are acceptable only if they also include a substantial introduction to applications to one of the listed problem domains.

Mathematics [CS]
Page 3

YES	NO		Identify Documentation Submitted
		2. Statistical applications: courses must satisfy \mathbf{a}, \mathbf{b}, and \mathbf{c}.	
	\measuredangle	a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on developing knowledge in statistical inference and include coverage of all of the following:	
		i. Design of a statistical study.	
		ii. Summarization and interpretation of data.	
		iii. Methods of sampling.	
		iv. Standard probability models.	
		v. Statistical estimation	
		vi. Hypothesis testing.	
		vii. Regression or correlation analysis.	
		c. The course must include multiple demonstrations of how computers can be used to perform statistical analysis more efficiently, if use of computers to carry out the analysis is not required.	

Mathematics [CS]
Page 4

YES	NO		Identify Documentation Submitted
		3. Quantitative applications: courses must satisfy \mathbf{a}, \mathbf{b}, and \mathbf{c} :	
	\searrow	a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on the use of mathematical models in quantitative analysis and decision making. Examples of such models are:	
		i. Linear programming.	
		ii. Goal programming.	
		iii. Integer programming.	
		iv. Inventory models.	
		v. Decision theory.	
		vi. Simulation and Monte Carlo methods.	
		vii. Other (explanation must be attached).	
		c. The course must include multiple demonstrations of how computers can be used to perform the above applications more efficiently, if use of computers is not required by students.	

Mathematics [CS]
Page 5

Course Prefix	Number	Title	General Studies Designation
CPI	111	Game Development 1: General Studies Designation: CS	

Explain in detail which student activities correspond to the specific designation criteria.
Please use the following organizer to explain how the criteria are being met.

Criteria (from checksheet)	How course meets spirit (contextualize specific examples in next column)	Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)
Graphic/artistic design using computers	students design 2d computer game prototypes and assets for the prototypes: 2d sprites, background graphics, GUI elements, 2d composition, lighting techniques	Assignments (pg. 4): final project: design document, implementation, etc. Week 1 (elements of game design) Week 3 (UI elements) Week 7 (game design documents) Week 12 (Game art and textures)
Algorithmic design and computational thinking	Students are introduced to basic programming concepts through both a simple 'drag and drop' coding tool and later via GML scripting language. Both are used regular programming assignments and for final game development projects	All Game Maker assignments require either 'drag and drop' scripting. Some require direct coding via GML. Week 8-9: GML introduction Week 13: Basic AI coding

CPI 111: Game Development 1 Course Catalog Description

Introduces video game design, art theory, and concepts as they apply to video game development. Basic art principles used in game development. Covers the fundamental video game art principles of 2-D and 3-D composition, color theory, modeling, and lighting techniques. Demonstrates practical application of these art fundamentals in establishing style guides, concept art, storyboards, and in-game assets. Also includes game design, game production, asset production, and game programming. Hands-on experience by creating 2-D game prototypes belonging to different video game genres and evaluating the techniques.

CPI 111- Game Development 1 Spring 2015

ARIZONA STATE UNIVERSITY - TEMPE, AZ

 SCHOOL OF COMPUTING, INFORMATICS AND DICISION SYSTEM ENGINEERING (CIDSE)Instructor: Brian C Nelson
Associate Professor, CIDSE
Office Room: BYEG M1-04
Office Hours: TH 2:45-3:45 PM
E-mail: Brian.Nelson@asu.edu
Lecture/Lab
Room: BYEG M1-11
Meeting Days: T TH 1:30-2:45 PM

I. Catalog Description:

Introduces video game design elements and concepts as they apply to video game development. Covers the fundamental video game art principles of 2D composition, color theory, and lighting techniques. Demonstrates practical application of these art fundamentals in establishing style guides, concept art, storyboards, and in-game assets. Also includes game design, game production, asset production, and game programming. Hands-on experience is gained by creating 2D game prototypes belonging to different video game genres and evaluating the techniques.
II. Prerequisite:

NONE

III. General Description

This course is intended to serve as an introduction into the game production cycle. The course breaks down the complex process of game creation into a simple step by step program. No programming knowledge is required for the course. However some degree of computer knowledge is desirable. The course will go into detail the design and production methodologies used for creating games in various genres. Students will apply the skills taught during class in the various assignments. The assignments will lead into each other and the final project will be a simple game created by the student as a result of successfully completing the various assignments. The class will teach the students how to use Game Maker 8, which is a simple easy to use visual game design and development software.
IV. Learning Objectives

The main learning objective is to learn how to design and develop 2D games using GameMaker8, which includes:
Game development, Level Design, Art, and AI engine editing using GML script (programming).

This is a hands-on class. Each student has one PC at class. In class the instructor explains the basic concepts and theory using PowerPoint Slides shown on the projectors, and demonstrates the functions of commands in Game Maker. The students follow the instructions using their PCs. If they have questions or problems during the instruction, the instructor will show the solutions. The assignments are due a week from when first assigned. Assignments will accepted late at a -10\% per day late penalty and will not be accepted after one week. A final project is announced in the 2nd week of class, and the solutions and problems related to the final project are discussed at class through the semester. It may be requested to meet individually for catching up with the topics outside of class. All of the materials using in class are available online at myASU course site. In addition, the students can learn from each other using Discussion board outside class time.
VI. Attendance Policy

Attendance in this class is expected and vital for completing assignments and the final project. We expect the students to maintain an atmosphere conducive to teaching and learning in the class. Active student participation is expected in all in-class discussions.

VII. Textbooks

"The Game Maker's Apprentice: Game Development for Beginners", by Jacob Habgood and Mark Overmars, ISBN-1-59059-615-3

VIII. References

A few web sites showing Game Maker examples:
http://www.yoyogames.com
https://www.yoyogames.com/gamemaker/\#download
http://sandbox.yoyogames.com/make/tutorials
http://wiki.yoyogames.com/
IX.

Schedule

Week		Topics	Reading	Homework
$\mathbf{1}$	$1 / 13$	$\begin{array}{l}\text { Introduction to the course } \\ \text { Game maker installation and setup } \\ \text { Quick tutorial }\end{array}$	Syllabus	
	$1 / 15$	$\begin{array}{l}\text { Elements of Game Design } \\ \text { Assignment 1: Creating your first Game }\end{array}$	http://goo.gl/ElZg4	

*The syllabus may change throughout the semester

X. Assignments

Students will be assigned 6 game development assignments, each worth 50 points (60% of the final grade). The assignments will test a student's skill in implementing the concepts discussed in class. These assignments will be implemented in Game Maker.

The Final Project will be the culmination of the efforts put by the student in the class assignments in developing a simple playable game. The Final project will have different deliverables over the time frame of the class

1. Initial Game Plot Paragraph (3 ${ }^{\text {rd }}$ week)
2. Game Design Document ($7^{\text {th }}$ week)
3. Final Game implementation, Presentation and Demo. (16-17 ${ }^{\text {th }}$ weeks)
XI. Evaluation

The breakdown is as follows:

6 Individual Assignments (50 points each)	300
Plot Paragraph	25
Design Docs \& Presentation	75
Final Game Project \& Presentation	100
TOTAL	500

XII. Grading Policy

$501+$	A+
$461-500$	A
$450-460$	A-
$440-449$	B+
$411-439$	B
$400-410$	B-
$350-399$	C
$300-349$	D
$0-348$	E

I (Incomplete) grade is not offered in this course
XIII. Disability resource center

Please check the website for ASU's Disability Resource Center (http://www.asu.edu/drc/) for assistance. Students with special needs should contact the center prior in order to secure assistance.

XIV. Honor policy:

The highest standards of academic integrity are expected of all students. The failure of any student to meet these standards may result in suspension or expulsion from the University or other sanctions as specified in the University Student Academic Integrity Policy. Violations of academic integrity include, but are not limited to, cheating, fabrication, tampering, plagiarism, or facilitating such activities.

XV. Expected Workload:

The course is designed to distribute workload pretty evenly over the semester. Students would typically spend 3-5 hours per week working on homework assignments and projects. Plan your schedule accordingly.

CPI 111: Required Textbook

"The Game Maker's Apprentice: Game Development for Beginners", by Jacob Habgood and Mark Overmars, ISBN-1-59059-615-3
Foreword xiv
About the Authors xvi
About the Technical Reviewer xvii
About the lllustrator xviii
Acknowledgments xix
Introduction xx
PART 1 -ㅌㅍㅡ․ Getting Started
CHAPTER 1 Welcome to Game Maker 3
Installing the Software 3
Registration 5
The Global User Interface 6
Running a Game 6
How to Get More Information 8
What's Next? 8
CHAPTER 2 Your First Game: Devilishly Easy 9
Designing the Game: Evil Clutches 9
Sprites 10
Objects 13
The Boss Object 13
Events and Actions 14
The Dragon Object 18
Rooms 20
Save and Run 22
Instances and Objects 24
Demons, Baby Dragons, and Fireballs 24
The Fireball Object 24
The Demon Object 27
Summoning Demons 30
The Baby Dragon Object 31Copyrighted Material
Backgrounds and Sounds 33
A Background Image 33
Background Music 34
Sound Effects 35
Congratulations 36
CHAPTER 3 More Actions: A Galaxy of Possibilities 41
Designing the Game: Galactic Mail 41
Sprites and Sounds 42
Moons and Asteroids 45
Flying Around 50
Winning and Losing 56
An Explosion 56
Scores 57
Levels 58
Finishing Touches 60
A Title Screen 60
Winning the Game 61
Adding Some Visual Variety 62
Help Information 62
Congratulations 63
CHAPTER 4 Target the Player: It's Fun Being Squished 65
Designing the Game: Lazarus 65
An Animated Character 66
A Test Environment 72
Falling Boxes 73
Finishing Touches 78
№ Way Out! 78
Adding a Goal 79
Starting a Level 80
Sounds, Backgrounds, and Help 81
Levels 82
Congratulations 83
CHAPTER 5 Game Design: Interactive Challenges 85
What Makes a Good Game? 85
Game Mechanics 86
Interactive Challenges 87
Game Genres 87
Challenges 88
Difficulty 88
Goals 89
Bewards 90
Subgoals 92
Interactivity 92
Choices and Control 93
Control Overload! 93
Unfair Punishment 94
Audio Feedback 95
Summary 96

PART 3 -ㅌㅡㅡㄴ Level Design

CHAPTER 6 Inheriting Events: Mother of Pearl 101
Designing the Game: Super Rainbow Reef 101
A Game Framework 103
Ihe Front-End 103
The Completion Screen 106
Bouncing Starfish 107
Biglegs 113
Parent Power 116
Lives 117
Blocks 120
Normal Blocks 120
Solid Blocks 120
Special Blocks 121
Polishing the Game 123
Sound Effects 123
Saving Games and Quitting 123
A Slower Start 124
Creating the Levels 125
Congratulations 126
Copyrighted Material
CONTENTS
Copyrighted Material
CHAPTER 7 Maze Games: More Cute Things in Peril 127
Designing the Game: Koalabr8 127
The Basic Maze 128
The Game Framework 129
A Moving Character 131
Save the Koala 136
Creating Hazards 137
Tiles 140
Adding Additional Hazards 143
Locks and Switches 143
A Detonator 144
Rocks 145
Finishing the Game 147
Congratulations 148
CHAPTER 8 Game Design: Levels and Features 149
Selecting Features 149
Pie in the Sky 150
Do You Have That in Blue? 151
Starting an Arms Race 152
One-Trick Ponies 152
Emerging with More Than You Expected 153
Designing Levels 154
The Game Maker's Apprentice 155
Learning Curves 156
Difficulty Curves 158
Saving the Day 160

ApplyingaltAll
Eeatures 160
Emerging Springs 161
Training Missions 161
Dividing Levels 162
Summary 163

PART 4 - - - Multiplayer Games

CHAPTER 9 Cooperative Games: Flying Planes 169
Designing the Game: Wingman Sam 169
Variables and Properties 170
The Illusion of Motion 173
Flying Planes 174
Enemies and Weapons 176
Dealing with Damage 179
Time lines 182
More Enemies 184
End Boss 186
Finishing Touches 188
Congratulations 189
CHAPTER 10 Competitive Games: Playing Fair with Tanks 191
Designing the Game: Tank War 191
Playing with Tanks 192
Firing Shells 195
Secondary Weapons 199
Views 205
Congratulations 210
CHAPTER 11 Game Design: Balance in Multiplayer Games 211
Competition and Cooperation 211
Independent Competition 211
Dependent Competition 212
Independent Cooperation 213
Dependent Cooperation 213
Mix and Match 213
Balanced Beginnings 214
Equivalent Characters 214
Balancing Differences 214
Balanced Choice 218
Weighting Choices 218
Cyclic Relationships 218
Balanced Computer Opponents 220
Artificial Stupidity 220
Summary 221
PART 5 -ㅌㅌ Enemies and Intelligence
CHAPTER 12 GML: Become a Programmer 225
Hello World 226
Variables 228
Eunctions 230
Conditional Statements 232
Repeating Things 234
Arrays 237
Dealing with Other Instances 239
Scripts As Functions 240
Debugging Programs 242
Congratulations 244
CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe 245
Designing the Game: Tic-Tac-Toe 245
The Playing Field 246
Let the Computer Play 251
A Clever Computer Opponent 254
Adaptive Gameplay 256
Congratulations 257
CHAPTER 14 Intelligent Behavior: Animating the Dead 259
Designing the Game: Pyramid Panic 259
The Basic Framework 260
Creating the Maze and the Explorer 263
Expanding Our Horizons 265
Beactive Behavior 267
Iime for Treasure! 269
Copyrighted Material
Copyrighted Material
Movable Blocks 270
Bule-Based Behavior 271
Walking Around 273
Moving Toward the Explorer 275
Dealing with States 277
Scarabs 280
Let There Be Light 284
Looking to the Future 289
CHAPTER 15 Final Words 291
Creating Resources 291
Artwork: The GIMP 291
Music: Anvil Studio 292
Sound Effects: Audacity 294
The Game Maker Community 294
Note to Teachers 295
Good Luck 296
BIBLIOGRAPHY 297
INDEX 299

