Course information:
Copy and paste current course information from Class Search/Course Catalog.

Academic Unit: School of computing, informatics, decision systems engineering
Department: Computer Science

Subject: CSE Number: 180 Title: Computer Literacy
Units: 3

Is this a cross-listed course? (Choose one)
If yes, please identify course(s)
No

Is this a shared course? (choose one) If so, list all academic units offering this course
No

Requested designation: (Choose One)
Note: a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university's review and approval process.
For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu.

Submission deadlines dates are as follow:
For Fall 2015 Effective Date: October 9, 2014
For Spring 2016 Effective Date: March 19, 2015

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
• Literacy and Critical Inquiry core courses (L)
• Mathematics core courses (MA)
• Computer/statistics/quantitative applications core courses (CS)
• Humanities, Arts and Design core courses (HU)
• Social-Behavioral Sciences core courses (SB)
• Natural Sciences core courses (SO/SG)
• Cultural Diversity in the United States courses (C)
• Global Awareness courses (G)
• Historical Awareness courses (H)

A complete proposal should include:
- Signed General Studies Program Course Proposal Cover Form
- Criteria Checklist for the area
- Course Catalog description
- Course Syllabus
- Copy of Table of Contents from the textbook and list of required readings/books

Respectfully request that proposals are submitted electronically with all files compiled into one PDF. If necessary, a hard copy of the proposal will be accepted.

Contact information:
Name: Xuerong (Sherry) Feng
Phone: 52855
Mail code: 8809
Email: xuerong.feng@asu.edu

Department Chair/Director approval: (Required)
Chair/Director name (Typed): Dr. Sandeep Gupta
Date: 2/3/2015
Chair/Director (Signature):

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/12/11, 7/12, 5/14
Arizona State University Criteria Checklist for

MATHEMATICAL STUDIES [CS]

Rationale and Objectives

The Mathematical Studies requirement is intended to ensure that students have skill in basic mathematics, can use mathematical analysis in their chosen fields, and can understand how computers can make mathematical analysis more powerful and efficient. The Mathematical Studies requirement is completed by satisfying both the Mathematics [MA] requirement and the Computer/Statistics/Quantitative Applications [CS] requirement explained below.

The Mathematics [MA] requirement, which ensures the acquisition of essential skill in basic mathematics, requires the student to complete a course in College Mathematics, College Algebra, or Pre-calculus; or demonstrate a higher level of skill by completing a mathematics course for which a course in the above three categories is a prerequisite.

The Computer/Statistics/Quantitative Applications [CS] requirement, which ensures skill in real world problem solving and analysis, requires the student to complete a course that uses some combination of computers, statistics, and/or mathematics.* Computer usage is encouraged but not required in statistics and quantitative applications courses. At a minimum, such courses should include multiple demonstrations of how computers can be used to perform the analyses more efficiently.

*CS does not stand for computer science in this context; the “S” stands for statistics. Courses in computer science must meet the criteria stated for CS courses.

Revised April 2014
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[CS] CRITERIA

A COMPUTER/STATISTICS/QUANTITATIVE APPLICATIONS [CS] COURSE MUST SATISFY ONE OF THE FOLLOWING CRITERIA: 1, 2, OR 3

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Computer applications: courses must satisfy both a and b:</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>a. Course involves the use of computer programming languages or software programs for quantitative analysis, algorithmic design, modeling, simulation, animation, or statistics.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>b. Course requires students to analyze and implement procedures that are applicable to at least one of the following problem domains (check those applicable):</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>i. Spreadsheet analysis, systems analysis and design, and decision support systems.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>ii. Graphic/artistic design using computers.</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>iii. Music design using computer software.</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>iv. Modeling, making extensive use of computer simulation.</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>v. Statistics studies stressing the use of computer software.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>vi. Algorithmic design and computational thinking.</td>
</tr>
</tbody>
</table>

*The **computer applications** requirement **cannot** be satisfied by a course, the content of which is restricted primarily to word processing or report preparation skills, the study of the social impact of computers, or methodologies to select software packages for specific applications. Courses that emphasize the use of a computer software package are acceptable only if students are required to understand, at an appropriate level, the theoretical principles embodied in the operation of the software and are required to construct, test, and implement procedures that use the software to accomplish tasks in the applicable problem domains. Courses that involve the learning of a computer programming language are acceptable only if they also include a substantial introduction to applications to one of the listed problem domains.*
<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2. Statistical applications: courses must satisfy a, b, and c.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. The course must be focused principally on developing knowledge in statistical inference and include coverage of all of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. Design of a statistical study.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Summarization and interpretation of data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Methods of sampling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Standard probability models.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Statistical estimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi. Hypothesis testing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii. Regression or correlation analysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. The course must include multiple demonstrations of how computers can be used to perform statistical analysis more efficiently, if use of computers to carry out the analysis is not required.</td>
</tr>
</tbody>
</table>
3. Quantitative applications: courses must satisfy a, b, and c:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td>Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>The course must be focused principally on the use of mathematical models in quantitative analysis and decision making. Examples of such models are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. Linear programming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Goal programming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Integer programming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Inventory models.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Decision theory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi. Simulation and Monte Carlo methods.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii. Other (explanation must be attached).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>The course must include multiple demonstrations of how computers can be used to perform the above applications more efficiently, if use of computers is not required by students.</td>
</tr>
</tbody>
</table>
Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checklist)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1.a</td>
<td>Criterion 1.a</td>
<td>Criterion 1.a</td>
</tr>
</tbody>
</table>
| Course involves the use of computer programming languages or software programs for quantitative analysis, modeling, simulation, animation, or statistics | - Student in this course are required to master spreadsheet applications, including formulas, functions, charts, modeling and analysis. Students will practice on various business or "everyday" problems. | 1. Syllabus pp.2 “Major Topics Covered”
2. Textbook Chp.13 The Basics of Spreadsheets (see textbook TOC)
1) Build a time zone "cheat sheet" to avoid calling friends in the middle of the night
2) Build a table to get the best deal when buying pizza
3) Develop data for helping to decide how much money to borrow for a "big ticket" purchase like a car or sound system.
3. MyITLab Online MS Excel 2013 training (see syllabus pp.2 and class schedule module #2, #3 and #4)
4. Spreadsheet project (see class schedule module #4)
In this project, students are given a partially filled "Smith" family house purchasing mortgage plan. They are required to apply the knowledge they learn in MyITLab Excel training, compute and finish the budget worksheet, help the couple to estimates their take-home pay and expenses, set up the formulas, charts to make a final purchasing decision. |
| | - Students in this course will learn the basics of SQL (Structured Query Language) and are required to write SQL queries to generate reports on an online database. Students will anyalysis and interprete the results to support decision making. | 1. Syllabus pp.2 “Major Topics Covered”
2. Textbook Chp.15 Introduction to Database Concepts (see textbook TOC and class schedule module #15)
3. Assignment: SQL Queries
Bonus quiz #3: Database (see class schedule module #15)
Online database can be found at: http://www.w3schools.com/sql/default.asp |
<table>
<thead>
<tr>
<th>Criterion 1.b (i)</th>
<th>Criterion 1.b (i)</th>
<th>Criterion 1.b (i)</th>
</tr>
</thead>
</table>
| Course requires students to analyze and implement procedures that are applicable to the following problem domains | - Student in this course are required to master spreadsheet applications, including formulas, functions, charts, modeling and analysis. Students will practice on various business and "everyday" problems. | 1. Syllabus pp.2 “Major Topics Covered”
2. Textbook Chp.13 The Basics of Spreadsheets (see textbook Chp.13 learning objectives and introductory)
1) Build a time zone "cheat sheet" to avoid calling friends in the middle of the night
2) Build a table to get the best deal when buying pizza
3) Develop data for helping to decide how much money to borrow for a "big ticket" purchase like a car or sound system. |
| i. Spreadsheet analysis, systems analysis and design, and decision support systems | 3. MyITLab Online MS Excel 2013 training (see syllabus pp.2 and class schedule module #2, #3 and #4) | 4. Spreadsheet project (see class schedule module #4)
In this project, students are given a partially filled "Smith" family house purchasing mortgage plan. They are required to apply the knowledge they learn in MyITLab Excel training, compute and finish the budget worksheet, help the couple to estimates their take-home pay and expenses, set up the formulas, charts to make a final purchasing decision. |

<table>
<thead>
<tr>
<th>Criterion 1.b (ii)</th>
<th>Criterion 1.b (ii)</th>
<th>Criterion 1.b (ii)</th>
</tr>
</thead>
</table>
| Graphic/Artistic design using computers | - Students in this course will learn HTML and design their own website. During the procedure, students will learn to use formatting, color, image and table tags to make their website attractive. They will also learn to use photo editing software to edit the photos. | 1. Syllabus pp.2 “Major Topics Covered”
2. Textbook chp.4 A Hypertext Markup Language Primer (see textbook TOC)
3. The HTML Website project (see class schedule module #6, #7 and #8)
In this project, students are required to design a fully functioning website which contains at least two pages, namely index.html and resume.html. The website is required to contain texts, images and hyperlinks. |
| | Students in this course will learn how information is represented – form basic bits, through sound and video, to virtual reality. They will learn the theory behind a digital photo editing software and will discuss JPEG, MPEG and the need for compression techniques for images and video. | 1. Syllabus “Major Topics Covered”
2. Textbook Chp.7 & 8 Representing Multimedia Digitally (see textbook TOC)
3. Bits/Byte (see class schedule module #9)
4. Multimedia (see class schedule module #10) |
<table>
<thead>
<tr>
<th>Criterion 1.b (vi)</th>
<th>Criterion 1.b (vi)</th>
<th>Criterion 1.b (vi)</th>
</tr>
</thead>
</table>
| vi. Algorithmic design and computational thinking | Students in this course will familiarize themselves with algorithms and become adept at reading them, writing them and evaluating them. | 1. Syllabus pp.2 “Major Topics Covered”
2. Textbook Chp.10 Algorithmic Thinking (see textbook TOC)
3. Algorithm Quiz (see class schedule module #12)
4. Assignment: Flowchart (see class schedule module #12)
In this assignment, students are required to design an algorithm for the procedure of registering courses at ASU and draw a flowchart accordingly. |
CSE 180 Computer Literacy Syllabus

Instructor

Dr. Xuerong (Sherry) Feng
Office: Brickyard 512 (5th floor)
Tel: (480)965-2855
Email: Xuerong.feng@asu.edu

Office Hour

Mon, Wed, Fri.: 10:00am ~ 11:00am
(at Coor 150 Pod C or D and through Blackboard Virtual Office)

I will be very glad to schedule another time with you if above time slots are not convenient for you, just email me to set up a time.

Textbook

(ASU Custom Version, 6th edition)

- Students are required to purchase above e-Textbook along with MyITLab access code directly from our Blackboard course website. There will be an "E-Textbook" button on our course website which directs you to purchase the materials. (MyITLab is an Addison Wesley MS Word and MS Excel 2013 online Training program which we will use to train on MS Excel and Word).

Course Description

- This course provides students with the requisite knowledge and skills necessary to succeed in today's computing society.
- Students will gain fluency in integrating technology to efficiently and effectively solve problems using computational thinking.
- The course focus is on learning to learn, and enables students with the power to explore, discover and self-teach technology.
- All aspects of information technology are introduced at an exploratory level, with in depth attention to finding, evaluating, processing, and presenting information.
- This course will also provide an overview of issues in security, privacy and ethics.
Course Objectives and Outcomes

Students who complete this course will gain

- Familiarity and comfort with basic computing concepts: computer parts, software, networking, collaborative computing, limits of computation, computer security, privacy and ethics, and the ubiquity of computers.
- Fluency in finding, evaluating, processing and presenting information.
- Knowledge and understanding of technology tools that enable problem solving with technology, including Web publishing, computational thinking, algorithms and spreadsheets.
- Exploratory knowledge of the art and science of information presentation.

Major Topics Covered

- Information Technology and the Human-Computer interface
- Common Applications
- The Basics of Networking
- HTML website design
- Locating Information on the WWW
- Representing information digitally
- Computational thinking and algorithms
- Multimedia representation
- Information and society, security, privacy and ethics
- Spreadsheets, databases and queries
- Limits to Computation

Grading

- 3 Projects: 10% each, total 30%
- MyITLab MS Excel & MS Word: 16%
- 17 ~20 Quizzes and Assignments: total 44%
- 1 Final Exam: 10%
- Grading breakdown (+/- System)

<table>
<thead>
<tr>
<th></th>
<th>A+</th>
<th></th>
<th>A</th>
<th></th>
<th>B+</th>
<th></th>
<th>B</th>
<th></th>
<th>C+</th>
<th></th>
<th>C</th>
<th></th>
<th>D</th>
<th></th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>90</td>
<td>87</td>
<td>80</td>
<td>77</td>
<td>70</td>
<td>60</td>
<td>Below 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Structure

You enrolled in an entirely online section and we assume you are prepared to take an online course. If you’re not sure, please take the Course Readiness Self-Assessment Quiz
online to check your readiness. Please be aware, this is *not* a course on how to use a computer.

If you are using a home computer, please click on this [link to tune up your web browser](https://alumni.asu.edu/services/alumni-directory/asurite-id-faqs) for MyITLab 2013, or you can check the technology requirements for it. In addition, you will need to have a reliable Internet connection. If you are not confident of your connection quality, you should utilize the computer labs on campus when completing online assignments and quizzes. Additionally, most libraries provide computers with reliable Internet access. If your connection is lost while completing a graded item, you could lose all work completed up to that point, possibly receiving a zero grade. Especially for the first week of the course, we highly recommend that you check to see whether you can run MyITLab 2013 training successfully on your PC. Note: *Equipment defects, technical difficulties cannot become excuses for late submissions.*

Please review the [Six Tips for Success in this Online Course](https://alumni.asu.edu/services/alumni-directory/asurite-id-faqs). At any time during the course, if you feel you are struggling, you should seek assistance immediately. The longer you wait, the more difficult it will be to get back on track.

Please be aware that you enrolled in an online section, when you have questions, the primary help you can get is through Discussion Board. After you post your question on discussion board, we will try our best to answer your question as quickly as we can (within 48 hours), be aware that the communication on discussion board is synchronized, so always start earlier and leave enough time for your question be answered before the due date/time.

Course Web Site

- In order to access online teaching materials, you need to get an ASURITE account as soon as possible. Please click on the following link to view instructions on how to get an ASURITE ID. If you experience any difficulty, please let us know as soon as possible.

 https://alumni.asu.edu/services/alumni-directory/asurite-id-faqs

- All lecture slides, projects/assignments, quizzes will be posted and submit through Blackboard. *Again, any equipment defects, technical difficulties cannot become excuses for late submissions.*

- The course is organized as weekly submission folders, unless specified otherwise; each weekly folder contains two modules (sub-folder). **These modules are due either on Tuesday or Thursday of the week at 11:59pm Arizona Time.** We will make the weekly folders available to students at least two weeks ahead of its due date/time. Students are highly recommended and encouraged to work ahead at their own pace since there is no penalty for early submission, but grades for manually graded assignments may not be posted until after the due date. Pay attention to due dates and plan accordingly since **no late submissions will be accepted and missed**
assignments/projects/quizzes will be assigned a grade of zero (or -) automatically by the system.

- Grade disputes need to be emailed to the corresponding TA within one week of grade posting. After one week, a posted grade will not be reconsidered. Later in the semester I will not look at assignments/projects submitted earlier in the semester.

- It is the student’s responsibility to check the announcement page as often as the semester progresses and to start working on the assignment as soon as it is posted. It is very important to check the course website frequently.

Miscellaneous

- **Missed quizzes/Assignments/tests**: if you need to miss a quiz/test/assignment, you must have a legitimate university approved excuse, such as a severe injury, illness or participation in a legal proceeding that require your presence, etc. You must contact the instructor and provide satisfactory evidence prior or within two days after the absence. A missed quiz/test/assignment without permission or supporting documents is a zero.

- **E-mail policy**: as this is an online course, if you have any questions on course related materials, such as an assignment or a project, you should:

 - First, post your questions on discussion board and we will answer it as soon as possible (within 48 hours), or
 - ask me or TA during our online office hour (through discussion board)

Please restrain from sending an email to us since communication through email is very inefficient as a lot of times we have to answer the same question multiple times. On the other hand, please feel free to send an email to us if you have any questions on your grades or any other personal issues which you think are not appropriate to discuss it publicly.

- **Withdraw**: if you wish to withdraw from the class, submitting a completed withdraw form to the registrar office is the only guaranteed way to officially withdrawing from the class. Logon to the following website to see detailed withdraw policies. http://www.asu.edu/aad/manuals/usi/usi201-08.html

- **Incomplete grade** will NOT be given for this course. Please check the university policy on this at http://www.asu.edu/aad/manuals/usi/usi203-09.html. Please do not come to me during or at the end of the semester and ask for an "I" grade simply because you have fallen behind.

- **Academic Integrity**: Cheating, plagiarism will not be tolerated and will result in "E" grade in the course. All the assignments should be Individual work. Copy from other person's work in any manner is prohibited. You can discuss course materials, but you
should not discuss or give a copy of your work to another person. The instructor reserves the rights to check the similarity of two works randomly. For more information on university academic integrity policy, click on the following website: http://www.asu.edu/studentaffairs/studentlife/judicial/academic_integrity.htm

- **DRC Service**: Students requesting classroom accommodations or modifications because of a documented disability must contact the Disability Resource Center. The phone number is (480)965-4732. For additional information concerning the services provided by the center, please visit their web site at http://www.asu.edu/studentaffairs/ed/drc/
<table>
<thead>
<tr>
<th>Week</th>
<th>Module No.</th>
<th>Reading Assignments</th>
<th>Assignments</th>
<th>Projects & Final Exam</th>
</tr>
</thead>
</table>
| 1 | Module 1 | Course syllabus, class schedule and grading breakdown. | 1. Discussion board check in.
2. Course readiness self assessment.
3. Quiz on syllabus.
4. myITLab - Getting Started with myitlab | |
2. myITlab - MS Excel Chapter 1 | |
| 2 | Module 3 | (continue on myitlab) | 1. myITlab - MS Excel Chapter 2
2. myITlab - MS Excel Chapter 3 | Project #1: Spreadsheet & Chart |
| | Module 4 | Chp.1: Terms of Endearment: Defining Information Technology | 1. myITLab - MS Excel Chapter 4
2. Spreadsheet Project. | |
| 3 | Module 5 | Chp.2: Face it, It's a Computer: Exploring the Human–Computer Interface | 1. Quiz: Applications
2. myITlab - MS Word Chapter 1 | |
| | Module 6 | Chp.3: Making the Connection: The Basics of Networking | 1. Quiz: Networking
2. myITLab - MS Word Chapter 2
3. Website setup | |
| 4 | Module 7 | Chp.4: Marking Up with HTML: A Hypertext Markup Language | 1. Set up the index.html page.
2. Bonus Quiz #1: HTML | |
| | Module 8 | Chp.5: The Search for Truth: Locating Information on the WWW | 1. Set up the resume.html page and refine your website.
2. Assignment: Scavenger Hunt | Project #2: Website |
| 5 | Module 9 | Chp.7: Bits and the "Why" of Bytes: Representing Information Digitally | 1. myITLab - MS Word Chapter 3
2. Quiz: Bits/Bytes | |
| | Module 10 | Chp.8: Light, Sound, Magic: Representing Multimedia Digitally | Quiz: Multimedia | |
| 6 | Module 11 | Chp.9: Following Instructions: Principles of Computer Operation | 1. myITLab - MS Word Chapter 4
2. Bonus Quiz #2: Computer Operation | |
| | Module 12 | Chp.10: What's the Plan? Algorithmic Thinking | 1. Quiz: Algorithm
2. Assignment: flowchart | |
| 7 | Module 13 | Chp.11: Computers in Polite Society: Social Implications of IT | Quiz: Security I | |
2. Quiz: Security II | Project #3: Wiki - Privacy/Security |
| 8 | Module 15 | Chp.15: A Table with a View: Introduction to Database Concepts | 1. Assignment: SQL Queries
2. Bonus Quiz #3: Database | |
| | Module 16 | Chp.23: A Fluency Summary: Click to Close | Final exam review posted online | Final Exam |
Course Catalogue Description

<table>
<thead>
<tr>
<th>CSE 180</th>
<th>Computer Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students gain fluency in integrating technology to efficiently and effectively solve problems using computational thinking.</td>
</tr>
<tr>
<td>Allow multiple enrollments:</td>
<td>No</td>
</tr>
<tr>
<td>Primary course component:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Repeatable for credit:</td>
<td>No</td>
</tr>
<tr>
<td>Grading method:</td>
<td>Student Option</td>
</tr>
<tr>
<td>Offered by:</td>
<td>Ira A. Fulton Schools of Engineering -- Computer Science and Engineering Program</td>
</tr>
</tbody>
</table>
part 1 Becoming Skilled at Computing

chapter 1 Defining Information Technology
 Terms of Endearment 3
 Computers Are Everywhere 5
 Software 8
 Experience 10
 The Data 13
 Summary 16
 Terms of Endearment 16
 Algorithms 18
 The Words for Ideas 23
 Summary 26
 Try It Solutions 26
 Review Questions 27

chapter 2 Exploring the Human-Computer Interface
 Face It, It's a Computer 29
 A Few Useful Concepts 31
 Perfect Reproduction 34
 Summary 45
 Try It Solutions 46
 Review Questions 46

chapter 3 The Basics of Networking
 Making the Connection 49
 Comparing Communication Types 51
 The Medium of the Message 54
 The World Wide Web 67
 The Internet and the Web 69
 File Structure 71
 Summary 74
 Try It Solutions 74
 Review Questions 74

chapter 4 A Hypertext Markup Language Primer
 Marking Up with HTML 79
 Marking Up with HTML 81
 Lab Practice I 84
 Structuring Documents 87
 Lab Practice II 91
 Marking Links with Anchor Tags 94
 Including Pictures with Image Tags 97
 Cascading Style Sheets (CSS) 103
 Lists and Tables 110
 HTML Wrap-Up 114
 Summary 114
 Try It Solutions 115
 Review Questions 116
part 2

Algorithms and Digitizing Information

chapter 7
Representing Information Digitally

Bits and the "Why" of Bytes 191
Digitizing Discrete Information 193
Fundamental Information Representation 195
Hex Explained 200
Digitizing Numbers in Binary 201

chapter 8
Representing Multimedia Digitally

Light, Sound, Magic 219
Digitizing Color 221
Color and the Mystery of Light 221
Computing on Representations 230
Digitizing Sound 237
Digital Images and Video 240
Optical Character Recognition 245

chapter 9
Principles of Computer Operations

Following Instructions 257
What Computers Can and Cannot Do 259
The Fetch/Execute Cycle 259
Anatomy of a Computer 261
The Program Counter: The PC's PC 266
Instruction Interpretation 267
Cycling the Fetch/Execute Cycle 271
Software 273

Integrated Circuits 279
How Semiconductor Technology Works 282
Combining the Ideas 284
Summary 286
Try It Solutions 286
Review Questions 287

chapter 10
Algorithmic Thinking

What's the Plan? 291
Inside Story on Algorithms 293
Algorithms—A Basic Concept 295
A Closer Look 299
Doing the Right Thing 305

Summary 308
Try It Solutions 309
Review Questions 309
learning objectives

- Know the meaning of and use hypertext terms
- Use HTML tags to structure a document
- Use HTML tag attributes
- Use HTML tags to link to other files
- Explain the differences between absolute and relative pathnames
- Use Cascading Style Sheets to style a Web page
- Use HTML to encode lists and tables
Representing Multimedia Digitally
Light, Sound, Magic

learning objectives
› Explain how RGB color is represented in bytes
› Explain the difference between “bits” and “binary numbers”
› Change an RGB color by binary addition
› Explain concepts related to digitizing sound waves
› Explain the meaning of the Bias-Free Universal Medium Principle
Algorithmic Thinking

What's the Plan?

Learning Objectives

- List the five essential properties of an algorithm
- Explain similarities and differences among algorithms, programs, and heuristic solutions
- Use the *Intersect Alphabetized List* algorithm to do the following:
 - Follow the flow of the instruction execution
 - Follow an analysis to pinpoint assumptions
- Demonstrate algorithmic thinking by being able to do the following:
 - Explain the importance of alphabetical order on the solution
 - Explain the importance of the barrier abstraction for correctness
The Basics of Spreadsheets

Fill-in-the-Blank Computing

Learning objectives

- Explain how data is organized in spreadsheets
- Describe how to refer to spreadsheet rows, columns, and cell ranges
- Explain relative and absolute references
- Apply concepts of relative and absolute references when filling a formula
- Explain the concept of tab-delimited input and output
Introduction to Database Concepts

A Table with a View

learning objectives

› Use XML to describe the metadata for a table of information, and classify the uses of the tags as identification, affinity, or collection

› Explain the differences between everyday tables and database tables

› Explain how the concepts of entities and attributes are used to design a database table

› Use the six database operations: Select, Project, Union, Difference, Product, and Join

› Describe the differences between physical and logical databases

› Express a query using Query By Example