Course information:
Copy and paste current course information from Class Search/Course Catalog.

<table>
<thead>
<tr>
<th>Academic Unit</th>
<th>Human Systems Engineering</th>
<th>Department</th>
<th>The Polytechnic School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>EGR</td>
<td>Number</td>
<td>323</td>
</tr>
<tr>
<td>Title</td>
<td>Perception and Human Systems (to be HSE 323 when new prefix is approved)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is this a cross-listed course? (Choose one)
If yes, please identify course(s)

Is this a shared course? (choose one)
If so, list all academic units offering this course

Requested designation: (Choose One)
Note: a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university’s review and approval process.
For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu.

Submission deadlines dates are as follow:
For Fall 2015 Effective Date: October 9, 2014
For Spring 2016 Effective Date: March 19, 2015

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
- Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/statistics/quantitative applications core courses (CS)
- Humanities, Arts and Design core courses (HU)
- Social-Behavioral Sciences core courses (SB)
- Natural Sciences core courses (SQ/SG)
- Cultural Diversity in the United States courses (C)
- Global Awareness courses (G)
- Historical Awareness courses (H)

A complete proposal should include:
- Signed General Studies Program Course Proposal Cover Form
- Criteria Checklist for the area
- Course Catalog description
- Course Syllabus
- Copy of Table of Contents from the textbook and list of required readings/books

Respectfully request that proposals are submitted electronically with all files compiled into one PDF. If necessary, a hard copy of the proposal will be accepted.

Contact information:
Name: Nancy J. Cooke
Phone: 480-727-5158
Mail code: 2880
E-mail: ncooke@asu.edu

Department Chair/Director approval: (Required)
Chair/Director name (Typed): Ann McKenna
Date: 2/10/15
Chair/Director (Signature):

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/12/11, 7/12, 5/14
Arizona State University Criteria Checklist for

SOCIAL-BEHAVIORAL SCIENCES [SB]

Rationale and Objectives

Social-behavioral sciences use distinctive scientific methods of inquiry and generate empirical knowledge about human behavior, within society and across cultural groups. Courses in this area address the challenge of understanding the diverse natures of individuals and cultural groups who live together in a complex and evolving world.

In both private and public sectors, people rely on social scientific findings to consider and assess the social consequences of both large-scale and group economic, technological, scientific, political, ecological and cultural change. Social scientists' observations about human interactions with the broader society and their unique perspectives on human events make an important contribution to civic dialogue.

Courses proposed for a General Studies designation in the Social-Behavioral Sciences area must demonstrate emphases on: (1) social scientific theories, perspectives and principles, (2) the use of social-behavioral methods to acquire knowledge about cultural or social events and processes, and (3) the impact of social scientific understanding on the world.

Revised April 2014
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SB] CRITERIA

A SOCIAL-BEHAVIORAL SCIENCES [SB] course should meet all of the following criteria. If not, a rationale for exclusion should be provided.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Course is designed to advance basic understanding and knowledge about human interaction.</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>Course description, syllabus, & table of Contents from the textbook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Course content emphasizes the study of social behavior such as that found in:</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>• ANTHROPOLOGY</td>
</tr>
<tr>
<td></td>
<td>✔️</td>
<td>• ECONOMICS</td>
</tr>
<tr>
<td></td>
<td>✔️</td>
<td>• CULTURAL GEOGRAPHY</td>
</tr>
<tr>
<td></td>
<td>✔️</td>
<td>• HISTORY</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>Psychology</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>Sociology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Course emphasizes:</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>a. the distinct knowledge base of the social and behavioral sciences (e.g., sociological anthropological).</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>b. the distinct methods of inquiry of the social and behavioral sciences (e.g., ethnography, historical analysis).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course description, syllabus, & table of Contents from the textbook</td>
</tr>
<tr>
<td>✔️</td>
<td></td>
<td>4. Course illustrates use of social and behavioral science perspectives and data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course description, syllabus, & table of Contents from the textbook</td>
</tr>
</tbody>
</table>

THE FOLLOWING TYPES OF COURSES ARE EXCLUDED FROM THE [SB] AREA EVEN THOUGH THEY MIGHT GIVE SOME CONSIDERATION TO SOCIAL AND BEHAVIORAL SCIENCE CONCERNS:

- Courses with primarily arts, humanities, literary or philosophical content.
- Courses with primarily natural or physical science content.
- Courses with predominantly applied orientation for professional skills or training purposes.
- Courses emphasizing primarily oral, quantitative, or written skills.
Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This course is designed to provide students with a profound understanding of how we receive and interpret information from the natural and social environments. The sensory and perceptual mechanisms not only connect us to the physical world, but also let us understand the feelings, emotions and thoughts of others. Many social topics have been interwoven into this course. These topics include face recognition (Chap 5 & Chap 12 from Harris’ book), speech perception (chap 13), perceiving other people’s intention and action (Chap 7), perceiving pain in social situations (Chap 14), and the perception of emotions (Chap 13 from Harris’ book).</td>
<td>The classes on 09/22/2015, 09/29/2015, 10/20/2015, 11/05/2015, & 11/10/2015 will focus particularly on the perceptual processes involved in social interaction, for example, face recognition, speech perception, understanding of other people’s action and intention, pain perceived in social situations, and perception of emotions.</td>
</tr>
<tr>
<td>2</td>
<td>While the emphasis is put on understanding basic sensation and perception from individual’s perspective, another theme of this course is the perception of information from social interaction.</td>
<td>See the table of content from the textbook and the list of additional reading assignments. Chapters 6, 7, 11, 12, 13, & 14 of the textbook address the perceptual problems in the context of social interaction such as perception of attention,</td>
</tr>
<tr>
<td>It will cover how we perceive sounds and speech, how we understand other people's intention and action, and how we feel touch and pain in social situations. These topics will be beneficial for students in neuroscience, psychology, anthropology, and sociology.</td>
<td>understanding of other people's intention and action, speech perception, music perception, and feeling of pain in social situations. Chapters 12 & 13 from Harris’ Sensation & Perception explain the perceptual mechanisms underlying face recognition (Chapter 12) and emotions (Chapter 13).</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>The course will extensively cover the behavioral aspects of perception and use many real-world illustrations and illusions to show how our perceptual systems work. It also teaches students the techniques and methods used to investigate human behavior (see Chap 1 & Appendix).</td>
<td>The class on 08/27/2015, for example, will address specifically the research methods used to study human perception. Signal detection theory will be covered, which has been used in a wide range of research areas in psychology, sociology, and neuroscience.</td>
<td></td>
</tr>
<tr>
<td>This course emphasizes the integration of behavioral research with potential applications to engineering practice. The covered topics will include the application of perceptual theories to real-world problems like computer vision, display technologies, graphic design, sound processing, etc.</td>
<td>Throughout this course we will discuss the application of perceptual theories to real-world problems, for example, shape/object recognition by computer (Chap 5) and computer understanding of speech (Chap 13). Social studies are also included, for example, social effects of subliminal perception and priming (class on 09/24/2015), and the use of virtual reality to promote prosocial behavior in real world (class on 10/22/2015)</td>
<td></td>
</tr>
</tbody>
</table>
EGR 323: Perception and Human Systems

In-depth exploration of methods by which humans receive and interpret information from the world by vision, audition, taste, smell, touch, and movement. Emphasizes the integration of behavioral research with potential applications to engineering practice. Topics will cover a wide range from the biological basis of sensory information processing, to the behavioral and social aspects of perception, and to the applications of perceptual theories to disciplines like computer vision, display technologies, graphic design, and sound processing. Upon successful completion of this course, students will have a solid foundation for further coursework and research in neuroscience or psychology, but also gain knowledge that could be useful in various professions.
EGR-323: Perception and Human Systems
Arizona State University
Fall semester 2015
Course line # 12345

Instructor Information:
Dates of classes: Tues & Thurs, Aug. 20 - Dec. 3
Instructor: Bing Wu, Ph.D.
Human System Engineering Program
Email: Bing.Wu@asu.edu (preferred contact method)
Work Phone: 480-727-3716 (O)
Office Hours: Tues & Thurs, 4:30 – 5:30 or by appointments through email
Office Location: 150E, Santa Catalina Hall, Polytechnic campus

Course Information:
Pre-requisites: EGR 103 or PSY 101 and junior or senior standing
Course Format: Lectures. The class will meet on Tuesdays and Thursdays from 12:00 to 1:15 pm at Room 310, Peralta Hall.
Course description: In-depth exploration of methods by which humans receive and interpret information from the world by vision, audition, taste, smell, touch, and movement. Emphasizes the integration of behavioral research with potential applications to engineering practice. Topics will cover a wide range from the biological basis of sensory information processing, to the behavioral and social aspects of perception, and to the applications of perceptual theories to disciplines like computer vision, display technologies, graphic design, and sound processing. Upon successful completion of this course, students will have a solid foundation for further coursework and research in neuroscience or psychology, but also gain knowledge that could be useful in various professions.
Required Course Texts, Materials and Resources:
The required textbook is as follows:

 Dr. Goldstein’s book is excellent, but it covers relatively little of social perception. I have yet found a good text that extends from basic sensation and perception to the social domain, and I do not want you to buy two texts. I will supplement the text with additional reading materials, including research articles and chapters from other books. These reading materials and other course materials like PowerPoint presentations and study guides for the exams will be available on the Blackboard (http://myasucourses.asu.edu).

Student Objectives and Learning Outcomes
After completing this course, students should be able to:
 - Describe how our perceptual systems operate and how sensory and perceptual processes shape the experience of “reality”;
 - Identify the classical and modern research techniques, and their roles in the science of perceptual systems;
 - Critically analyze original research in perception;
 - Gain a good understanding of the capabilities and limitations of human perceptual systems and apply such knowledge to engineering problems such as the design of effective human-machine interfaces.
<table>
<thead>
<tr>
<th>Date</th>
<th>Class Topic & Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/20/2015</td>
<td>Syllabus & class introduction</td>
</tr>
</tbody>
</table>
| 08/25/2015 | Introduction to perceptual systems
Reading: Textbook, Chap 1 (pp. 3 - 12) |
| 08/27/2015 | Research methods & techniques
Reading: Textbook, Chap 1 (pp. 12 - 20);
Signal detection theory: Textbook, Appendix (401-406) |
| 09/01/2015 | The physiological hardware of our senses
Reading: Textbook, Chap 2 (pp. 23 - 39) |
| 09/03/2015 | Vision as information processing: From the retina to the brain
Reading: Textbook, Chap 3 (pp. 43 - 68), Chap 4 (pp. 73 - 87) |
| 09/08/2015 | Vision as information processing: Higher order visual centers
Reading: Textbook, Chap 4 (pp. 88 - 95)
| 09/10/2015 | Seeing color
Reading: Textbook, Chap 9 (pp. 201 - 225) |
| 09/15/2015 | Review (1) |
| 09/17/2015 | Exam 1 |
| 09/22/2015 | Object & face recognition
Reading: Textbook, Chap 5 (pp. 99 - 127)
| 09/24/2015 | Attention & subliminal perception
Reading: Textbook, Chap 6 (pp. 133 - 150)
| 09/29/2015 | Perception of action and interaction
Reading: Textbook, Chap 7 (pp. 155 - 172) |
| 10/01/2015 | Perceiving biological and non-biological motion
Reading: Textbook, Chap 8 (pp. 177 - 196) |
| 10/06/2015 | Visual spatial perception & 3D-display technology
Reading: Textbook, Chap 10 (pp. 229 - 255) |
| 10/08/2015 | Auditory perception: Perception of pitch & music
Reading: Textbook, Chap 11 (pp. 259 - 287)
| 10/13/2015 | Fall Break – Classes Excused |
| 10/15/2015 | Auditory perception: Sound localization & auditory scene analysis
Reading: Textbook, Chap 12 (pp. 291 - 307) |
| 10/20/2015 | Verbal communications: Speech perception
Reading: Textbook, Chap 13 (pp. 311 - 325) |
| 10/22/2015 | Perception and virtual reality technology
<table>
<thead>
<tr>
<th>Date</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/27/2015</td>
<td>Review (2)</td>
</tr>
<tr>
<td>10/29/2015</td>
<td>Exam 2</td>
</tr>
<tr>
<td>11/03/2015</td>
<td>The senses of Touch</td>
</tr>
<tr>
<td></td>
<td>Reading: Textbook, Chap 14 (pp. 329 - 349)</td>
</tr>
<tr>
<td>11/05/2015</td>
<td>Perception of physical and social pain</td>
</tr>
<tr>
<td></td>
<td>Reading: Textbook, Chap 14 (pp. 343 - 351)</td>
</tr>
<tr>
<td>11/10/2015</td>
<td>Perceiving emotions</td>
</tr>
<tr>
<td>11/13/2015</td>
<td>Olfaction: Smelling</td>
</tr>
<tr>
<td></td>
<td>Reading: Textbook, Chap 15 (pp. 355 - 366)</td>
</tr>
<tr>
<td>11/17/2015</td>
<td>Gustation: Tasting</td>
</tr>
<tr>
<td></td>
<td>Reading: Textbook, Chap 15 (pp. 366 - 375)</td>
</tr>
<tr>
<td>11/19/2015</td>
<td>Vestibular system</td>
</tr>
<tr>
<td>11/24/2015</td>
<td>Sensory integration & substitution</td>
</tr>
<tr>
<td>11/26/2015</td>
<td>Thanksgiving – Classes Excused</td>
</tr>
<tr>
<td>12/01/2015</td>
<td>How infants sense their world: Development of perceptual systems</td>
</tr>
<tr>
<td></td>
<td>Reading: Textbook, Chap 16 (pp. 379 - 397)</td>
</tr>
<tr>
<td>12/03/2015</td>
<td>Review (3)</td>
</tr>
<tr>
<td>12/08/2015</td>
<td>Exam 3</td>
</tr>
</tbody>
</table>

Course Assignments

For each topic, there will be lectures and assigned readings. The course requirements are (1) participation in class; (2) homework; (3) quizzes, and (4) three exams.

Readings: Reading assignments will be posted on the Blackboard or come from the textbooks. You should do the assigned reading before class.

Homework: Homework assignments will be posted on the Blackboard.

Quizzes: Quizzes will be given at the beginning of each class (excluding the review and exam days). They are designed to test your understanding of the reading assignment and ensure that you come prepared. Each quiz will account for 1% of the total grade. The quizzes also serve as an attendance record. NO make-up quizzes will be given. If a student misses a quiz, he or she will receive NO point for that quiz.
Exams: There will be three exams based on the materials covered in the classroom. The exams will be *closed-book, closed-notes, closed-homework, and taken in class*. The format is a combination of multiple-choice, short answer, and short essay. There will be NO make-up exam unless there is a documented emergency. Anyone missing an exam without a ASU sanctioned excuse will receive a zero score.

The course grade will be based as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>20 pts</td>
</tr>
<tr>
<td>Exam 2</td>
<td>20 pts</td>
</tr>
<tr>
<td>Exam 3</td>
<td>20 pts</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20 pts</td>
</tr>
<tr>
<td>Homework</td>
<td>20 pts</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100 pts</td>
</tr>
</tbody>
</table>

Grading Scale

Final grades will be assigned as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>>=96%</td>
</tr>
<tr>
<td>A</td>
<td>93-95%</td>
</tr>
<tr>
<td>A-</td>
<td>90-92%</td>
</tr>
<tr>
<td>B+</td>
<td>86-89%</td>
</tr>
<tr>
<td>B</td>
<td>83-85%</td>
</tr>
<tr>
<td>B-</td>
<td>80-82%</td>
</tr>
<tr>
<td>C+</td>
<td>76-79%</td>
</tr>
<tr>
<td>C</td>
<td>70-75%</td>
</tr>
<tr>
<td>D</td>
<td>60-69%</td>
</tr>
<tr>
<td>E</td>
<td><60%</td>
</tr>
<tr>
<td>XE</td>
<td>Failure due to Academic Dishonesty</td>
</tr>
</tbody>
</table>

NO incomplete grades will be given except in cases of serious medical emergencies as evidenced by a documented report.

Grade Appeals

ASU has formal and informal channels to appeal a grade. If you wish to appeal any grading decisions, please see http://catalog.asu.edu/appeal.

Classroom behavior:

- **Attendance and Participation**

 Your presence for the entire class period is mandatory and critical to academic success. The following penalties will be imposed for missing class without a valid and verifiable excuse: Every unexcused absence causes a deduction of 5 points from the final grade. Absences will be excused ONLY if the student has a ASU sanctioned excuse. The excused absences include those resulting from: (1) illness, death in the family or other emergency, or other reasons beyond the student’s control; (2) a student’s religious beliefs, observances, and practices that are in accord with ACD 304–04 (http://www.asu.edu/aad/manuals/acd/acd304-04.html), “Accommodation for Religious Practices”, and (3) those university sanctioned events/activities that are in accord with ACD 304–02 (http://www.asu.edu/aad/manuals/acd/acd304-02.html), “Missed Classes Due to University-Sanctioned Activities”.

- **Late and Missing Assignments**

 Make-up exams will NOT be given unless the student provides documentation of the illness or emergency. Anyone missing an exam without a university sanctioned excuse will receive a zero score.

- **Cell Phone and Recording Devices**
Always turn off your cellular phone before you enter our classroom. You are not allowed to receive and make phone calls during class meetings. Other communication devices and recording devices are also strictly prohibited from the classroom.

Electronic Communication

Acceptable use of university computers, internet and electronic communications can be found in the Student Code of Conduct (http://www.asu.edu/aad/manuals/usi/usi104-01.html) and in the University's Computer, Internet, and Electronic Communications Policy (http://www.asu.edu/aad/manuals/acd/acd125.html).

University policies:

- **Academic Integrity**
 All students at ASU are expected to follow the Student Code of Conduct. Each student must act with honesty and integrity, and must respect the rights of others in carrying out all academic assignments. Plagiarism, and any other form of academic dishonesty that is in violation with the Student Code of Conduct, will not be tolerated. All necessary and appropriate sanctions will be issued to all parties involved with plagiarizing any and all course work. For more information, please see the ASU Student Academic Integrity Policy: http://provost.asu.edu/academicintegrity.

- **Nondiscrimination, Anti-Harassment, and Nonretaliation**
 Arizona State University is committed to providing the university community, including students, faculty, staff, and guests, with an environment that is free of harassment, discrimination, or retaliation. ASU expressly prohibits harassment, discrimination, and retaliation by employees, students, contractors, or agents of the university based on protected status, including race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, and gender identity. If you believe that you have been subjected to any discrimination, harassment, or retaliation in violation of this policy, or you believe that this policy has been violated, you should report the matter immediately to the Office of Equity and Inclusion (https://cfo.asu.edu/hr-equityandinclusion; Phone: (480) 965-5057; Fax: (480) 237-7998; Email: EqualityandInclusion@mainex1.asu.edu).

- **Policy against Threatening Behavior**
 Any kind of abusive, disruptive, threatening, or violent behaviour will NOT be tolerated. Students are expected to comply with the ASU policy against threatening behavior, per the Student Services Manual, SSM 104–02 (http://www.asu.edu/aad/manuals/ssm/ssm104-02.html), “Handling Disruptive, Threatening, or Violent Individuals on Campus”. Any violent or threatening conduct by an ASU student in this class will be reported to the ASU Police Department and the Office of the Dean of Students.

- **Disability Accommodations**
 To request academic accommodations due to a disability, please contact the ASU Disability Resource Center (https://eoss.asu.edu/drc; Phone: (480) 965-1234; Fax: (480) 965-0441; Email: DRC@asu.edu). This is a very important step as accommodations may be difficult to make retroactively. If you have a letter from their office indicating that you have a disability which requires academic accommodations, in order to assure that you receive your accommodations in a timely manner, please present this documentation to me no later than the end of the first week of the semester so that your needs can be addressed effectively.
• **Religious Accommodations**
 Students will not be penalized for missing class due to religious obligations, holidays, observances, and practices that are in accord with ACD 304–04 (http://www.asu.edu/aad/manuals/acd/acd304-04.html). Students who need to be absent from class due to the observance of a religious holiday or participate in required religious functions must notify me in writing as far in advance of the holiday/obligation as possible. Students will need to identify the specific holiday or obligatory function to me. The student should contact me to make arrangements for making up tests/assignments within a reasonable time.

• **Military Personnel Statement**
 A student who is a member of the National Guard, Reserve, or other U.S. Armed Forces branch and is unable to complete classes because of military activation may request complete or partial administrative unrestricted withdrawals or incomPLEtes depending on the timing of the activation. For information, please see http://www.asu.edu/aad/manuals/usi/usi201-18.html.

Syllabus disclaimer:
This syllabus is intended to give the student guidance in what may be covered during the semester. Efforts will be made to follow the syllabus as outlined above, but the possibility exists that unforeseen events will make syllabus changes necessary. The instructor reserves the right to make changes to this syllabus and/or course schedule. If changes are made, students will be notified in a timely manner by e-mail or by an announcement in class.
Textbook

List of additional materials

Book chapters:

 Chapter 12. Recognising faces.
 Chapter 13. Perceiving emotions and attractiveness.

 Chapter 11. Music and Speech Perception
 Chapter 15. Spatial Orientation and the Vestibular System

 Chapter 1. Introduction to Virtual Reality

Research articles:

Brief Contents

1 Introduction to Perception 3
2 Introduction to the Physiology of Perception 23
3 Introduction to Vision 43
4 The Visual Cortex and Beyond 73
5 Perceiving Objects and Scenes 99
6 Visual Attention 133
7 Taking Action 155
8 Perceiving Motion 177
9 Perceiving Color 201
10 Perceiving Depth and Size 229
11 Sound, the Auditory System, and Pitch Perception 259
12 Sound Localization and the Auditory Scene 291
13 Speech Perception 311
14 The Cutaneous Senses 329
15 The Chemical Senses 355
16 Perceptual Development 379
Appendix
Signal Detection Theory 401
Glossary 407
References 425
Name Index 443
Subject Index 449
Introduction to Vision 43

FOCUSING LIGHT ONTO THE RETINA 44
Light: The Stimulus for Vision 44
The Eye 44
Light Is Focused by the Eye 44
DEMONSTRATION: Becoming Aware of What Is in Focus 45

TRANSFORMING LIGHT INTO ELECTRICITY 47
The Visual Receptors and Transduction 47
How Does Transduction Occur? 47

PIGMENTS AND PERCEPTION 50
Distribution of the Rods and Cones 50
DEMONSTRATION: Becoming Aware of the Blind Spot 52
DEMONSTRATION: Filling in the Blind Spot 52
Dark Adaptation of the Rods and Cones 52
METHOD: Measuring Dark Adaptation 53
Spectral Sensitivity of the Rods and Cones 56
TEST YOURSELF 3.1 57

NEURAL CONVERGENCE AND PERCEPTION 58
Why Rods Result in Greater Sensitivity Than Cones 58
Why We Use Our Cones to See Details 60
DEMONSTRATION: Foveal Versus Peripheral Acuity 60

LATERAL INHIBITION AND PERCEPTION 61
What the Horseshoe Crab Teaches Us About Inhibition 62
Lateral Inhibition and Lightness Perception 62
DEMONSTRATION: Creating Mach Bands in Shadows 64
DEMONSTRATION: Simultaneous Contrast 66
A Display That Can’t Be Explained by Lateral Inhibition 67

SOMETHING TO CONSIDER: PERCEPTION IS INDIRECT 68
TEST YOURSELF 4.2 68
Think About It 68
If You Want to Know More 69
Key Terms 69
Media Resources 70

FOLLOWING THE SIGNALS FROM RETINA TO CORTEX 74
The Visual System 74
Processing in the Lateral Geniculate Nucleus 75
METHOD: Determining Retinotopic Maps by Recording From Neurons 76
Receptive Fields of Neurons in the Striate Cortex 77

DO FEATURE DETECTORS PLAY A ROLE IN PERCEPTION? 79
Selective Adaptation and Feature Detectors 79
METHOD: Selective Adaptation to Orientation 80
Selective Rearing and Feature Detectors 80

MAPS AND COLUMNS IN THE STRIATE CORTEX 82
Maps in the Striate Cortex 82
METHOD: Brain Imaging 82
Columns in the Striate Cortex 84
How Is an Object Represented in the Striate Cortex? 86
TEST YOURSELF 4.1 87

STREAMS: PATHWAYS FOR WHAT, WHERE, AND HOW 87
Streams for Information About What and Where 88
METHOD: Brain Ablation 88
Streams for Information About What and How 89
METHOD: Dissociations in Neuropsychology 89

MODULARITY: STRUCTURES FOR FACES, PLACES, AND BODIES 91
Face Neurons in the Monkey’s IT Cortex 92
Areas for Faces, Places, and Bodies in the Human Brain 92

SOMETHING TO CONSIDER: HOW DO NEURONS BECOME SPECIALIZED? 94
Is Neural Selectivity Shaped by Evolution? 94
How Neurons Can Be Shaped by Experience 94
TEST YOURSELF 4.2 95
Think About It 95
If You Want to Know More 96
Key Terms 96
Media Resources 97
WHY IS IT SO DIFFICULT TO DESIGN A PERCEIVING MACHINE? 101
The Stimulus on the Receptors Is Ambiguous 101
Objects Can Be Hidden or Blurred 102
Objects Look Different From Different Viewpoints 102

THE GESTALT APPROACH TO OBJECT PERCEPTION 104
DEMONSTRATION: Making Illusory Contours Vanish 104
The Gestalt Laws of Perceptual Organization 105
DEMONSTRATION: Finding Faces in a Landscape 107
Perceptual Segregation: How Objects Are Separated From the Background 108
The Gestalt "Laws" as Heuristics 109
RECOGNITION-BY-COMONENTS THEORY 110
DEMONSTRATION: Non-Accidental Properties 111

PERCEIVING SCENES AND OBJECTS IN SCENES 114
Perceiving the Gist of a Scene 114
METHOD: Using a Mask to Achieve Brief Stimulus Presentations 114
Regularities in the Environment: Information for Perceiving 115
DEMONSTRATION: Shape From Shading 116
DEMONSTRATION: Visualizing Scenes and Objects 117
The Role of Inference in Perception 118
Revisiting the Science Project: Designing a Perceiving Machine 119

THE PHYSIOLOGY OF OBJECT AND SCENE PERCEPTION 120
Neurons That Respond to Perceptual Grouping and Figure–Ground 120
How Does the Brain Respond to Objects? 121
Connecting Neural Activity and Perception 122
METHOD: Region-of-Interest Approach 122

SOMETHING TO CONSIDER: MODELS OF BRAIN ACTIVITY THAT CAN PREDICT WHAT A PERSON IS LOOKING AT 124

TEST YOURSELF 5.1 113
TEST YOURSELF 6.1 141

ATTENTION AND PERCEIVING THE ENVIRONMENT 134
Why Is Selective Attention Necessary? 134
How Is Selective Attention Achieved? 135
What Determines How We Scan a Scene? 135

HOW DOES ATTENTION AFFECT OUR ABILITY TO PERCEIVE? 137
Perception Can Occur Without Focused Attention 137
Perception Can Be Affected by a Lack of Focused Attention 138
DEMONSTRATION: Change Detection 139

DEMONSTRATION: Searching for Conjunctions 145
The Physiological Approach to Binding 146

THE PHYSIOLOGY OF ATTENTION 146
SOMETHING TO CONSIDER: ATTENTION IN AUTISM 148

TEST YOURSELF 6.2 150

Think About It 150
If You Want to Know More 151
Key Terms 152
Media Resources 152

Virtual Lab 129
Taking Action 155

THE ECOLOGICAL APPROACH TO PERCEPTION 156
The Moving Observer and Information in the Environment 156
Self-Produced Information 157
The Senses Do Not Work in Isolation 158
DEMONSTRATION: Keeping Your Balance 158

NAVIGATING THROUGH THE ENVIRONMENT 159
Other Strategies for Navigating 159
The Physiology of Navigation 161
TEST YOURSELF 7.1 165

ACTING ON OBJECTS: REACHING AND GRASPING 165
Affordances: What Objects Are Used For 165
The Physiology of Reaching and Grasping 166

OBSERVING OTHER PEOPLE’S ACTIONS 168
Mirroring Others’ Actions in the Brain 168
Predicting People’s Intentions 169
Mirror Neurons and Experience 170

SOMETHING TO CONSIDER: CONTROLLING MOVEMENT WITH THE MIND 171
TEST YOURSELF 7.2 172

Anchoring 173
If You Want to Know More 173
Key Terms 173
Media Resources 174

Perceiving Motion 177

FUNCTIONS OF MOTION PERCEPTION 178
Motion Helps Us Understand Events in Our Environment 178
Motion Attracts Attention 179

Motion Provides Information About Objects 179
DEMONSTRATION: Perceiving a Camouflaged Bird 179

STUDYING MOTION PERCEPTION 180
When Do We Perceive Motion? 180
Comparing Real and Apparent Motion 181
What We Want to Explain 182

MOTION PERCEPTION: INFORMATION IN THE ENVIRONMENT 183
NEURAL FIRING TO MOTION ACROSS THE RETINA 184
Motion of a Stimulus Across the Retina: The Aperture Problem 184
DEMONSTRATION: Motion of a Bar Across an Aperture 185
Motion of Arrays of Dots on the Retina 186
METHOD: Microstimulation 188
TEST YOURSELF 8.1 188

TAKING EYE MOTIONS INTO ACCOUNT: THE COROLLARY DISCHARGE 189
Corollary Discharge Theory 189
Behavioral Demonstrations of Corollary Discharge Theory 190
DEMONSTRATION: Eliminating the Image Displacement Signal With an Afterimage 190
DEMONSTRATION: Seeing Motion by Pushing on Your Eyelid 190
Physiological Evidence for Corollary Discharge Theory 191

PERCEIVING BIOLOGICAL MOTION 192
Brain Activation by Point-Light Walkers 192
Linking Brain Activity and the Perception of Biological Motion 193
METHOD: Transcranial Magnetic Stimulation (TMS) 193

SOMETHING TO CONSIDER: GOING BEYOND THE STIMULUS 194
Implied Motion 194
Apparent Motion 195
TEST YOURSELF 8.2 195

Think About It 196
If You Want to Know More 196
Key Terms 197
Media Resources 197

VIRTUAL LAB 197
Chapter 9: Perceiving Color

INTRODUCTION TO COLOR 202
What Are Some Functions of Color Vision? 202
What Colors Do We Perceive? 203
Color and Wavelength 204
Wavelengths Do Not Have Color! 206

TRICROMATIC THEORY OF COLOR VISION 207
Behavioral Evidence for the Theory 207
The Theory: Vision Is Trichromatic 207
Physiology of Trichromatic Theory 207

COLOR DEFICIENCY 211
Monochromatism 212
Dichromatism 212
Physiological Mechanisms of Receptor-Based Color Deficiency 213

OPPONENT-PROCESS THEORY OF COLOR VISION 213
Behavioral Evidence for the Theory 213
DEMONSTRATION: The Colors of the Flag 214
DEMONSTRATION: Afterimages and Simultaneous Contrast 214
DEMONSTRATION: Visualizing Colors 214
The Theory: Vision Is An Opponent Process 215
The Physiology of Opponent-Process Vision 215

COLOR IN THE CORTEX 217

PERCEIVING COLORS UNDER CHANGING ILLUMINATION 217
DEMONSTRATION: Color Perception Under Changing Illumination 218
Chromatic Adaptation 219
DEMONSTRATION: Adapting to Red 219
The Effect of the Surroundings 220
DEMONSTRATION: Color and the Surroundings 220
Memory and Color 220

LIGHTNESS CONSTANCY 220
Intensity Relationships: The Ratio Principle 221
Lightness Perception Under Uneven Illumination 221
DEMONSTRATION: The Penumbra and Lightness Perception 222
DEMONSTRATION: Perceiving Lightness at a Corner 223

Chapter 10: Perceiving Depth and Size

OCULOMOTOR CUES 231
DEMONSTRATION: Feelings in Your Eyes 231

MONOCULAR CUES 231
Pictorial Cues 231
Motion-Produced Cues 233
DEMONSTRATION: Deletion and Accretion 234

BINOCULAR DEPTH INFORMATION 235
Binocular Disparity 235
DEMONSTRATION: Two Eyes: Two Viewpoints 235
Connecting Disparity Information and the Perception of Depth 238
DEMONSTRATION: Binocular Depth From a Picture, Without a Stereoscope 238
The Correspondence Problem 240

DEPTH INFORMATION ACROSS SPECIES 240

THE PHYSIOLOGY OF DEPTH PERCEPTION 242
Neurons That Respond to Pictorial Depth 242
Neurons That Respond to Binocular Disparity 242
Connecting Binocular Depth Cells and Depth Perception 242

PERCEIVING SIZE 243
The Holway and Boring Experiment 244
Size Constancy 246
DEMONSTRATION: Perceiving Size at a Distance 247
DEMONSTRATION: Size–Distance Scaling and Emmert’s Law 247

VISUAL ILLUSIONS 249
The Müller-Lyer Illusion 249
DEMONSTRATION: Measuring the Müller-Lyer Illusion 249
DEMONSTRATION: The Müller-Lyer Illusion With Books 250

SOMETHING TO CONSIDER: EXPERIENCES THAT ARE CREATED BY THE NERVOUS SYSTEM 224

TEST YOURSELF 9.3 224
Think About It 224
If You Want to Know More 225
Key Terms 226
Media Resources 226
VIRTUAL LAB 227
Speech Perception 311

THE SPEECH STIMULUS 312
The Acoustic Signal 312
Basic Units of Speech 313

THE VARIABLE RELATIONSHIP BETWEEN PHONEMES AND THE ACOUSTIC SIGNAL 315
Variability From Context 315
Variability From Different Speakers 315

INFORMATION FOR PHONEME PERCEPTION 316
Categorical Perception 316
Information Provided by the Face 318
Information From Our Knowledge of Language 318

INFORMATION FOR SPOKEN WORD PERCEPTION 319
Information From Sentence Context 319

DEMONSTRATION: Perceiving Degraded Sentences 319
DEMONSTRATION: Organizing Strings of Sounds 320

INFORMATION FROM SPEAKER CHARACTERISTICS 322

SPEECH PERCEPTION AND THE BRAIN 323
Cortical Location of Speech Perception 323
Experience-Dependent Plasticity 324

PAIN 343
Questioning the Direct Pathway Model of Pain 343
The Gate Control Model 345
Cognition and Pain 345
The Brain and Pain 346

PERCEIVING DETAILS 334
DEMONSTRATION: Measuring Tactile Acuity 335
Receptor Mechanisms for Tactile Acuity 335

DEMONSTRATION: Comparing Two-Point Thresholds 335
Cortical Mechanisms for Tactile Acuity 336

PERCEIVING VIBRATION 337

PERCEIVING OBJECTS 340
DEMONSTRATION: Identifying Objects 340
Identifying Objects by Haptic Exploration 340
The Physiology of Tactile Object Perception 341

PERCEIVING OBJECTS 340

SOMETHING TO CONSIDER: PAIN IN SOCIAL SITUATIONS 349

The Chemical Senses 355

THE OLFACTORY SYSTEM 356
Functions of Olfaction 356
Detecting Odors 357
METHODOLOGY: Measuring the Detection Threshold 357
Identifying Odors 358
DEMONSTRATION: Naming and Odor Identification 358
The Puzzle of Olfactory Quality 358

THE NEURAL CODE FOR OLFACTORY QUALITY 359
The Olfactory Mucosa 359
Olfactory Receptor Neurons 359
Activating Olfactory Receptor Neurons 361
 METHOD: Calcium Imaging 361
Activating the Olfactory Bulb 361
 METHOD: Optical Imaging 362
 METHOD: 2-Deoxyglucose Technique 362

HIGHER-ORDER OLFACTOR Y PROCESSING 364
Olfaction in the Environment 364
The Physiology of Higher-Order Processing 365

THE TASTE SYSTEM 366
Functions of Taste 366
Basic Taste Qualities 367

THE NEURAL CODE FOR TASTE QUALITY 367
Structure of the Taste System 367
Distributed Coding 369
Specificity Coding 370

THE PERCEPTION OF FLAVOR 372
Flavor = Taste + Olfaction 373
 DEMONSTRATION: “Tasting” With and Without the Nose 373
The Physiology of Flavor Perception 373

SOMETHING TO CONSIDER: INDIVIDUAL DIFFERENCES IN TASTING 374

PERCEIVING FACES 387
Recognizing Their Mother’s Face 387
Is There a Special Mechanism for Perceiving Faces? 388

PERCEIVING OBJECT UNITY 389

HEARING 391
Threshold for Hearing a Tone 391
Recognizing Their Mother’s Voice 391

PERCEIVING SPEECH 392
The Categorical Perception of Phonemes 393
Experience and Speech Perception 394

INTERMODAL PERCEPTION 394

PERCEIVING SPEECH 395

SOMETHING TO CONSIDER: THE UNITY OF PERCEPTION 396

BASIC VISUAL CAPACITIES 380
Visual Acuity 380
 METHODS: Preferential Looking and Visual Evoked Potential 380
Contrast Sensitivity 383
Perceiving Color 384
 METHOD: Habituation 385
Perceiving Depth 386