Course information:
Copy and paste current course information from Class Search/Course Catalog:

<table>
<thead>
<tr>
<th>Academic Unit</th>
<th>School of Earth and Space Exploration</th>
<th>Department</th>
<th>College of Liberal Arts and Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>GLG</td>
<td>Number</td>
<td>110</td>
</tr>
<tr>
<td>Subject</td>
<td>GLG</td>
<td>Title</td>
<td>Dangerous World</td>
</tr>
<tr>
<td>Is this a cross-listed course?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is this a shared course?</td>
<td>Yes</td>
<td>If so, list all academic units offering this course</td>
<td>see below</td>
</tr>
</tbody>
</table>

Offered by: The School of Earth and Space Exploration, CLAS, Tempe Campus; Math and Natural Sciences Division, ASU West

Requested designation: Global Awareness-G
Note: a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university’s review and approval process.
For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu or Lauren.Leo@asu.edu.

Submission deadlines dates are as follow:
For Fall 2015 Effective Date: October 9, 2014
For Spring 2016 Effective Date: March 19, 2015

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
- Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/statistics/quantitative applications core courses (CS)
- Humanities, Arts and Design core courses (HU)
- Social-Behavioral Sciences core courses (SB)
- Natural Sciences core courses (NS/NG)
- Cultural Diversity in the United States courses (C)
- Global Awareness courses (G)
- Historical Awareness courses (H)

A complete proposal should include:
- Signed General Studies Program Course Proposal Cover Form
- Criteria Checklist for the area
- Course Catalog description
- Course Syllabus
- Copy of Table of Contents from the textbook and list of required readings/books

Respectfully request that proposals are submitted electronically with all files compiled into one PDF.
If necessary, a hard copy of the proposal will be accepted.

Contact information:
Name: Becca Dial
Phone: 480-965-2213
E-mail: bdial@asu.edu

Mail code: 6004

Department Chair/Director approval: (Required)

Chair/Director name (Typed): Hilairy Hartnet
Date: 3/23/15

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/12/11, 7/12, 5/14
Rationale and Objectives

Human organizations and relationships have evolved from being family and village centered to modern global interdependence. The greatest challenge in the nuclear age is developing and maintaining a global perspective which fosters international cooperation. While the modern world is comprised of politically independent states, people must transcend nationalism and recognize the significant interdependence among peoples of the world. The exposure of students to different cultural systems provides the background of thought necessary to developing a global perspective.

Cultural learning is present in many disciplines. Exposure to perspectives on art, business, engineering, music, and the natural and social sciences that lead to an understanding of the contemporary world supports the view that intercultural interaction has become a daily necessity. The complexity of American society forces people to balance regional and national goals with global concerns. Many of the most serious problems are world issues and require solutions which exhibit mutuality and reciprocity. No longer are hunger, ecology, health care delivery, language planning, information exchanges, economic and social developments, law, technology transfer, philosophy, and the arts solely national concerns; they affect all the people of the world. Survival may be dependent on the ability to generate global solutions to some of the most pressing problems.

The word university, from universitas, implies that knowledge comes from many sources and is not restricted to local, regional, or national perspectives. The Global Awareness Area recognizes the need for an understanding of the values, elements, and social processes of cultures other than the culture of the United States. Learning which recognizes the nature of others cultures and the relationship of America’s cultural system to generic human goals and welfare will help create the multicultural and global perspective necessary for effective interaction in the human community.

Courses which meet the requirement in global awareness are of one or more of the following types: (1) in-depth area studies which are concerned with an examination of culture-specific elements of a region of the world, country, or culture group, (2) the study of contemporary non-English language courses that have a significant cultural component, (3) comparative cultural studies with an emphasis on non-U.S. areas, and (4) in-depth studies of non-U.S. centered cultural interrelationships of global scope such as the global interdependence produced by problems of world ecology, multinational corporations, migration, and the threat of nuclear war.

Reviewed 4/2014
Proposer: Please complete the following section and attach appropriate documentation.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Studies must be composed of subject matter that addresses or leads to an understanding of the contemporary world outside the U.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Written description; 2. textbook table of contents; 3. course schedule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The course must match at least one of the following descriptions: (check all which may apply):</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>a. In-depth area studies which are concerned with an examination of culture-specific elements of a region, country or culture group. The area or culture studied must be non-U.S. and the study must contribute to an understanding of the contemporary world.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Written description; 2. textbook table of contents; 3. course schedule</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>b. The course is a language course for a contemporary non-English language, and has a significant cultural component.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Written description; 2. textbook table of contents; 3. course schedule</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>c. The course is a comparative cultural study in which most, i.e., more than half, of the material is devoted to non-U.S. areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Written description; 2. textbook table of contents; 3. course schedule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. The course is a study of the cultural significance of a non-U.S.-centered global issue. The course examines the role of its target issue within each culture and the interrelatedness of various global cultures on that issue. It looks at the cultural significance of its issue in various cultures outside the U.S., both examining the issue’s place within each culture and the effects of that issue on world cultures.</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>1. Written description; 2. textbook table of contents; 3. course schedule</td>
</tr>
</tbody>
</table>
Criteria

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d: study the cultural significance of a non-U.S. centered global issue</td>
<td>The course examines the cultural significance of financial markets Japan, Korea, and the UK.</td>
<td>Module 2 shows how Japanese literature has shaped how Japanese people understand world markets. Module 3 shows how Japanese popular culture has been changed by the world financial market system. Modules 4 & 5 do the same for Korea and modules 6 & 7 do the same for the UK.</td>
</tr>
<tr>
<td>1. Studies must be composed of subject matter that addresses or leads to an understanding of the contemporary world outside the U.S.</td>
<td>The course is composed of subject matter that leads to an understanding of the contemporary world outside the US. In particular, we address issues related to the fact that, due to increasing population density, especially in some parts of the world, and the emergence of the global marketplace, natural disasters are now more likely than ever to have large death tolls and impact the global economy. Unfortunately, risk from natural hazards is increasing at an alarming rate in many places around the world, including the US, Western Europe, New Zealand, the Philippines, the islands of the Caribbean, Central and South America, and Indonesia.</td>
<td>In Unit 3, we examine the effects that the Eyjafjallajökull (Iceland) eruption in 2010 had on European air traffic and global commerce. Also in Unit 3, we explore the effects of climate change on the South Pacific Island of Tavalu.</td>
</tr>
<tr>
<td>2d: The course is a study of the cultural significance of a non-U.S.-centered global issue. The course examines the role of its target issue within each culture and the interrelatedness of various global cultures on that issue.</td>
<td>The course meets the requirements for Global Awareness designation because it, in a non-US-centered manner, addresses the global scope of impacts associated with natural disasters and the role that cultural and socio-economic factors play in controlling those impacts.</td>
<td>Unit 2 (Chapter 4, tsunami), teaches the students about the physical processes that generate and control tsunami, as well as looks at the impacts of tsunami on different human populations. In particular, the lectures and case studies compare the effects of the 2011 Tohoku tsunami on the Japanese economy with the impact of the 2004 Boxing Day tsunami on Indonesia. We use similar comparisons for every</td>
</tr>
</tbody>
</table>

Course Prefix	**Number**	**Title**	**Designation**
GLG | 110 | Dangerous World (Geologic Disasters) | Global Awareness (G)
Dangerous World (Geologic Disasters) GLG110 – When the violent energy of the earth is unleashed, the results can be catastrophic and far-reaching. As seen during the famously deadly and costly earthquakes and tsunamis of 2004 and 2011, the risks to life, property, global commerce, and infrastructure are escalating as more and more people live, work, play, and travel in geologically-active, hazard-prone regions. Natural disasters are now more likely than ever to have large death tolls and impact the global economy, due to increasing population density, especially in some parts of the world, and the emergence of the global marketplace. Unfortunately, risk from natural hazards is increasing at an alarming rate in many places around the world, including the US, Western Europe, New Zealand, the Philippines, the islands of the Caribbean, Central and South America, and Indonesia. These issues are addressed and discussed in GLG110, from both scientific and human perspective.

The course meets the requirements for Global Awareness designation because it, in a non-US-centered manner, addresses the global scope of impacts associated with natural disasters and the role that cultural and socio-economic factors play in controlling those impacts. The value of the scientific approach and an understanding of the underlying physical processes are inculcated in a discovery-oriented manner. In particular, significant time is dedicated to discussing the differences among nations in terms of resiliency to natural disasters and likelihood of suffering fatalities and economic losses.
Course Catalog Description for GLG110

Geological studies as they apply to interactions between humans and Earth. Includes geological processes and hazards, resources, and global change.
GLG110: Geologic Disasters and the Environment (online)
Spring 2015 B

Professor Amanda Clarke
Email Clarke.glg110@asu.edu

*****Email is the best way to reach me and get a quick response! If further discussion is required, we can arrange a chat on BlackBoard or Skype.

Teaching Assistants Brett Carr - brett.carr@asu.edu
 Chelsea Allison - cmalliso@asu.edu

Textbook: Natural Hazards: Earth's Processes as Hazards, Disasters, and Catastrophes, 4/E

Edward A. Keller, University of California, Santa Barbara
Duane E. DeVecchio, Arizona State University

Note about textbook – This is a relatively new textbook for this course. Material from the lectures is of the greatest importance, with the textbook serving to enhance your understanding through case studies. Material from assigned reading sections, however, may appear in exams, so please keep up with the assigned reading!

Course description: Geological studies as they apply to interactions between humans and Earth. Includes geological processes and hazards, resources, and global change.

Natural Sciences General Studies: Both GLG 110 and GLG 111 must be taken to secure Natural Sciences General Studies (SG credit–These laboratory courses cover aspects of scientific inquiry that lend themselves to more qualitative or descriptive discussions of science).
Computer Requirements

This is an online course taught through BlackBoard and therefore this course requires that you have access to a computer that can access the internet and that you know how to use BlackBoard. Do not use a smartphone for viewing class material or completing assignments! It is assumed you have suitable hardware, software, internet connectivity, and know how to administer your machine. You are responsible for having a reliable computer and internet connection throughout each assignment in the course.

You will need to have access to at least the following software packages:

1. A web browser (Internet Explorer, Mozilla Firefox, or Apple Safari or Google Chrome.) To see if the browser you are currently using is supported by BlackBoard, refer to this link:

2. Software (integrated with your browser) that can play .mp4 files.

3. Adobe Acrobat Reader (free) or other application that can open a PDF file.

4. Adobe Flash Player (free)

Technical Assistance

You are responsible for understanding how to use BlackBoard and for ensuring that the course content displays correctly within your browser. For technical assistance with obtaining, downloading, and installing the latest updates for the software packages mentioned above or for help with BlackBoard (i.e., you do not know how to take an exam in BlackBoard or you cannot see an image, etc.), ASU offers the following resources (24 hours per day/ 7 days per week) to all users: **ASU Helpdesk: online support:**

http://asu.edu/helpdesk or by phone: 855-278-5080.

Minimum Course Requirements

1. Read assigned text chapters
2. View video lectures and re-view lecture notes ONLINE
3. Complete select end of chapter case study questions
4. Three ONLINE topical exams
5. Final cumulative exam ONLINE

As stated above, questions on exams, quizzes and assignments will generally come from lectures (including guest lectures!) and the book, unless otherwise stated.
GRADING

1. On-line Exams: 2 x 100 = 200 total points (LOWEST EXAM IS DROPPED AUTOMATICALLY)
2. On-line end-of-chapter case study questions = 60 total points
3. Final Cumulative Exam - 200 points

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>100% or above</td>
</tr>
<tr>
<td>A</td>
<td>95 - 99%</td>
</tr>
<tr>
<td>A-</td>
<td>90 - 94%</td>
</tr>
<tr>
<td>B+</td>
<td>87 - 89%</td>
</tr>
<tr>
<td>B</td>
<td>83 - 86%</td>
</tr>
<tr>
<td>B-</td>
<td>80 - 82%</td>
</tr>
<tr>
<td>C+</td>
<td>75 - 79%</td>
</tr>
<tr>
<td>C</td>
<td>70 - 74%</td>
</tr>
<tr>
<td>C-</td>
<td>65 - 69%</td>
</tr>
<tr>
<td>D</td>
<td>55 - 64%</td>
</tr>
<tr>
<td>F</td>
<td>under 55%</td>
</tr>
</tbody>
</table>

Exams
The final is comprehensive for the whole course, is worth 200 points, and is required. We will drop the lowest score of your three 100-point unit exams, therefore, there will be no makeup exams. A zero from a missed online exam will simply be dropped. If you have a particular emergency that requires you to miss an exam, please provide an official excuse and we will work out a reasonable solution. [If the exam freezes while you are taking it, contact me immediately by email and we will investigate in order to come to a swift solution.] To ensure credit for completing the exam, refer to the “Taking Exams in BlackBoard” section of the end of this syllabus.

Study Guides
Study guides will be posted in advance of each exam. These will contain information you should know from the book and lectures.

Conduct
Academic misconduct and academic dishonesty will not be tolerated. Refer to Student Affairs for details.

Advice for online students

1) Take the time to review the syllabus and course schedule. View the introductory video. If initially you cannot view the required files, a simple change of browser and/or installation/update of software may solve the problem. See Computer Requirements above.

2) View the lecture videos in a timely fashion; pay attention to the course schedule, as it may be updated periodically.

3) Review lecture notes regularly. I will post them as pdf files, along with the video lecture. I recommend annotating them while viewing the videos, as not all required content will be written in the notes. Lecture pdfs will remain available for the duration of the course.

4) Send questions to me via email – Clarke.glg110@asu.edu.
Taking Exams in BlackBoard:

IMPORTANT: Do not rely on a wireless connection when taking tests (including coffeehouses and even your home) since problems can occur at any time and your test might "lock" or 'freeze' without completion. This can significantly affect your performance and grade. Always take tests at a "wired" computer, preferably in a quiet and private location. Here are some other tips for taking online tests in BlackBoard:

Other applications
* DO close other applications before taking the test (including chat programs).
* DO close all windows on the computer and then launch a new window to login to BlackBoard and the exam.

Web browser
* Do NOT click the "Refresh" or "Reload" buttons in your browser while taking the test.
* Do NOT use any of the browser navigation buttons (i.e. "Back", "Forward", "Home", etc.) during the test.

BlackBoard
* Do NOT navigate to other locations or applications in BlackBoard after the test opens or the assessment will "lock".
* Do NOT open other browser windows or applications while taking a test.
* Do NOT click on buttons in the BlackBoard navigation while taking a test.
* DO be sure the "Save Answer" and "Save and Submit" buttons are available (do NOT click yet!) at the bottom of the page after you open the test.
* Do NOT click "Save and Submit" until you have completed the exam.
* If you are only able to answer one question at a time (questions present themselves on separate pages), make sure you only single-click the "Next" button to move forward.

Academic Integrity Statement

Academic honesty is expected of all students in all examinations, papers, laboratory work, academic transactions and records. The possible sanctions include, but are not limited to, appropriate grade penalties, course failure (indicated on the transcript as a grade of E), course failure due to academic dishonesty (indicated on the transcript as a grade of XE), loss of registration privileges, disqualification and dismissal. For more information, see http://provost.asu.edu/academicintegrity.

Disability Policy Statement

An effort will be made to render this course fully accessible to all students. Qualified students with disabilities who will require disability accommodations in this class are encouraged to make their requests to me at the beginning of the semester either during office hours or by appointment. Note: Prior to receiving disability accommodations, verification of eligibility from the Disability Resource Center (DRC) is required. Their office is located on the first floor of the Matthews Center Building. DRC staff can also be reached at: 480-965-1234 (V), 480-965-9000 (TTY). For additional information, visit: www.asu.edu/studentaffairs/ed/drc. Their hours are 8:00 AM to 5:00 PM, Monday through Friday. Disability information is confidential.
<table>
<thead>
<tr>
<th>Unit</th>
<th>Days</th>
<th>Lecture Topics</th>
<th>Reading & Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Introduction; check browser and video player compatibility!</td>
<td>Read Chapter 1: Introduction to Natural Hazards (pp. 2 – 27) Complete the Chapter 1 on-line end-of-chapter questions: Introductory concepts (due March 25, 11:59 pm)</td>
</tr>
<tr>
<td>Unit 1</td>
<td>March 17 - March 25</td>
<td>Natural disasters and human population</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Method</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Formation of the Universe, Earth, Layers</td>
<td>Read Chapter 2: Internal Structure of Earth and Plate Tectonics (pp. 28 – 32)</td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Earth’s energy sources</td>
<td>Read Chapter 2: Internal Structure of Earth and Plate Tectonics (pp. 33 – 51) Complete the Chapter 2 online end-of-chapter case study questions: two cities on a plate boundary (due March 25, 11:59 pm)</td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Plate tectonics</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Plate tectonics</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Plate tectonics and magma production</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td></td>
<td>Plate tectonics and magma production</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td>March 25 (6 am)–March 29 (11:59 pm)</td>
<td>Exam I window</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>March 27 – April 8</td>
<td>Mass movements</td>
<td>Read Chapter 7: Mass Wasting (pp. 214 – 247)</td>
</tr>
<tr>
<td>Unit 2</td>
<td></td>
<td>Mass movements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass movements</td>
<td>Complete the Chapter 7 on-line end-of-chapter case study questions: La Conchita, CA, landslide (review pp. 242 – 247; due April 8, 11:59 pm) Complete the Chapter 13 on-line end-of-chapter case study questions: Summer 2013 two Southwest Wildfires (CO & AZ) (review pp. 467 – 471; due April 8, 11:59 pm)</td>
</tr>
<tr>
<td>Unit 2</td>
<td></td>
<td>Forest Fires</td>
<td>Read Chapter 13: Wildfires (pp.444 – 471)</td>
</tr>
<tr>
<td>Unit 2</td>
<td></td>
<td>Earthquake geology and seismology- Ramon Arrowsmith</td>
<td>Read Chapter 3: Earthquakes (pp. 52 – 99)</td>
</tr>
<tr>
<td>Unit 2</td>
<td></td>
<td>Earthquake geology and seismology- Ramon Arrowsmith</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td></td>
<td>Earthquake geology and seismology- Ramon Arrowsmith</td>
<td>Complete the Chapter 3 on-line end-of-chapter case study questions: 2011 Tohoku Earthquake, Japan (review pp. 94 – 99; due April 8, 11:59 pm)</td>
</tr>
<tr>
<td>Unit 2</td>
<td>Historic Earthquakes Ramon Arrowsmith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Historic Earthquakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Tsunami</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read Chapter 4: Tsunami (pp. 100 – 118)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsunami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Complete the Chapter 4 on-line end-of-chapter case study questions: Japan 2011 Tsunami and Nuclear Disaster (review pp. 120 – 125; due April 8, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>April 8 (6 am) – April 12 (11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam II window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>April 10 – April 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcanic hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read Chapter 5: Volcanoes (pp. 126 – 171)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcanic hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcanic hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcano case histories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the Chapter 5 on-line end-of-chapter case study questions: Eyjafjallajökull (Iceland) 2010 eruption (review pp. 165 – 171; due April 21, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcano aircraft hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the Chapter 5 on-line end-of-chapter case study questions: Eyjafjallajökull (Iceland) 2010 eruption (review pp. 165 – 171; due April 21, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Volcano monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No text reading, only lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Climate Change – Hilairy Hartnett</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read Chapter 12: Climate and Climate Change (pp. 404 – 443)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate Change – Hilairy Hartnett</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the Chapter 12 on-line end-of-chapter case study questions: Tavalu, South Pacific (review pp. 438 – 443; due April 21, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>April 21 (6 am) – April 25 (11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam III window</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read Chapter 9: Atmospheric Processes and Severe Weather (pp. 286 – 329)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the Chapter 9 on-line end-of-chapter case study questions: 1999 and 2013 Tornadoes of Moore, OK (review pp. 323 – 329; due April 27, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td>April 23 – April 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td>Tornadoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read Chapter 10: Hurricanes and Extratropical Cyclones (pp. 330 – 363)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the Chapter 10 on-line end-of-chapter case study questions: Hurricane Sandy (review pp. 356 – 363; due April 27, 11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hurricanes and the coastline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>April 27 (6 am) – May 1 (11:59 pm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumulative Final Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Ramon Arrowsmith and Hilairy Hartnett are guest lecturers
Natural Hazards: Earth's Processes as Hazards, Disasters, and Catastrophes, Fourth Edition

Table of Contents
iv Copyright
xviii Preface
2 1. Introduction to Natural Hazards
 5 1.1. Why Studying Natural Hazards Is Important
 5 Processes: Internal and External
 5 Hazard, Disaster, or Catastrophe
 8 Death and Damage Caused by Natural Hazards
 9 1.2. Role of History in Understanding Hazards
 9 1.3. The Geologic Cycle
 9 The Tectonic Cycle
 10 The Rock Cycle
 10 The Hydrologic Cycle
 11 Biogeochemical Cycles
 12 1.4. Fundamental Concepts for Understanding Natural Processes as Hazards
 12 Science and Natural Hazards
 12 1. Science helps us predict hazards.
 12 Hazards Are Natural Processes
 13 Forecast, Prediction, and Warning of Hazardous Events
 17 2. Knowing hazard risks can help people make decisions.
 17 3. Linkages exist between natural hazards.
 18 4. Humans can turn disastrous events into catastrophes.
 18 Examples of Disasters in Densely Populated Areas
 18 Population Growth as a Factor in Hazards
 19 Magnitude and Frequency of Hazardous Events
 20 5. Consequences of hazards can be minimized.
 20 Reactive Response: Impact of and Recovery from Disasters
 21 Anticipatory Response: Avoiding and Adjusting to Hazards
 22 CASE STUDY 1.1 Professional Profile: Professor Robert Bea, University of California, Berkeley
 24 1.5. Many Hazards Provide a Natural Service Function
 25 1.6. Global Climate Change and Hazards
 25 Concepts in Review
 27 Critical Thinking Questions

28 2. Internal Structure of Earth and Plate Tectonics
30 2.1. Internal Structure of Earth
33 2.2. Plate Tectonics
 33 Movement of the Tectonic Plates
 36 Types of Plate Boundaries
 38 Rates of Plate Motion
39 2.3. A Detailed Look at Seafloor Spreading
 40 Paleomagnetism
 42 Hot Spots
44 2.4. Pangaea and Present Continents
46 2.5. How Plate Tectonics Works: Putting It Together
48 2.6. Plate Tectonics and Hazards
3. Earthquakes

3.1. Introduction to Earthquakes
- Faults and Faulting

3.2. The Earthquake Processes
- The Earthquake Cycle
- Seismic Waves
- Tectonic Creep and Slow Earthquakes

3.3. Earthquake Shaking
- Earthquake Magnitude
- Earthquake Intensity
- Depth of Focus
- Direction of Rupture
- Distance to the Epicenter
- Supershear
- Local Geologic Conditions

3.4. Geographic Regions at Risk from Earthquakes
- Plate Boundary Earthquakes
- Intraplate Earthquakes

CASE STUDY 3.2 Survivor Story: Magnitude 8.8 Earthquake and Tsunami on the Coast of Chile

3.5. Effects of Earthquakes and Linkages with Other Natural Hazards
- Shaking and Ground Rupture

CASE STUDY 3.3 The Denali Fault Earthquake: Estimating Potential Ground Rupture Pays Off
- Liquefaction
- Regional Changes in Land Elevation
- Landslides
- Fires
- Disease

3.6. Natural Service Functions of Earthquakes
- Groundwater and Energy Resources
- Mineral Resources
- Landform Development
- Future Earthquake Hazard Reduction

3.7. Human Interaction with Earthquakes
- Earthquakes Caused by Human Activity

3.8. Minimizing the Earthquake Hazard
- The National Earthquake Hazard Reduction Program
- Estimation of Seismic Risk
- Short-Term Prediction

CASE STUDY 3.4 A Closer Look: Paleoseismic Earthquake Hazard Evaluation

3.9. Perception of and Adjustment to the Earthquake Hazard
- Perception of the Earthquake Hazard
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Community Adjustments to the Earthquake Hazard</td>
</tr>
<tr>
<td>91</td>
<td>CASE STUDY 3.5 Professional Profile: Andrea Donnellan, Earthquake Forecaster</td>
</tr>
<tr>
<td>93</td>
<td>Personal Adjustments: Before, During, and After an Earthquake</td>
</tr>
<tr>
<td>94</td>
<td>Applying the 5 Fundamental Concepts</td>
</tr>
<tr>
<td>97</td>
<td>Concepts in Review</td>
</tr>
<tr>
<td>99</td>
<td>Critical Thinking Questions</td>
</tr>
<tr>
<td>100</td>
<td>4. Tsunamis</td>
</tr>
<tr>
<td>102</td>
<td>4.1. Introduction to Tsunamis</td>
</tr>
<tr>
<td>102</td>
<td>How Do Earthquakes Cause a Tsunami?</td>
</tr>
<tr>
<td>104</td>
<td>CASE STUDY 4.1 Survivor Story: Tsunami in the Lowest Country on Earth</td>
</tr>
<tr>
<td>105</td>
<td>How Do Landslides Cause a Tsunami?</td>
</tr>
<tr>
<td>106</td>
<td>4.2. Geographic Regions at Risk from Tsunamis</td>
</tr>
<tr>
<td>108</td>
<td>CASE STUDY 4.2 Indonesian Tsunami</td>
</tr>
<tr>
<td>112</td>
<td>Tsunami Three Centuries Ago</td>
</tr>
<tr>
<td>113</td>
<td>4.3. Effects of Tsunamis and Linkages with Other Natural Hazards</td>
</tr>
<tr>
<td>114</td>
<td>4.4. Natural Service Functions of Tsunamis</td>
</tr>
<tr>
<td>114</td>
<td>4.5. Human Interaction with Tsunamis</td>
</tr>
<tr>
<td>114</td>
<td>4.6. Minimizing the Tsunami Hazard</td>
</tr>
<tr>
<td>114</td>
<td>Detection and Warning</td>
</tr>
<tr>
<td>114</td>
<td>Structural Control</td>
</tr>
<tr>
<td>115</td>
<td>Tsunami Runup Maps</td>
</tr>
<tr>
<td>116</td>
<td>Land Use</td>
</tr>
<tr>
<td>117</td>
<td>Probability Analysis</td>
</tr>
<tr>
<td>118</td>
<td>Education</td>
</tr>
<tr>
<td>118</td>
<td>Tsunami-Ready Status</td>
</tr>
<tr>
<td>118</td>
<td>4.7. Perception and Personal Adjustment to Tsunami Hazard</td>
</tr>
<tr>
<td>119</td>
<td>CASE STUDY 4.3 Professional Profile: Jose Borrero—Tsunami Scientist</td>
</tr>
<tr>
<td>120</td>
<td>Applying the 5 Fundamental Concepts</td>
</tr>
<tr>
<td>123</td>
<td>Concepts in Review</td>
</tr>
<tr>
<td>125</td>
<td>Critical Thinking Questions</td>
</tr>
<tr>
<td>126</td>
<td>5. Volcanoes</td>
</tr>
<tr>
<td>128</td>
<td>5.1. Introduction to Volcanism</td>
</tr>
<tr>
<td>129</td>
<td>How and Where Magma Forms</td>
</tr>
<tr>
<td>131</td>
<td>Magma Properties</td>
</tr>
<tr>
<td>133</td>
<td>5.2. Volcano Types, Formation, and Eruptive Behavior</td>
</tr>
<tr>
<td>141</td>
<td>5.3. Geographic Regions at Risk from Volcanoes</td>
</tr>
<tr>
<td>141</td>
<td>5.4. Effects of Volcanoes</td>
</tr>
<tr>
<td>142</td>
<td>Lava Flows</td>
</tr>
<tr>
<td>143</td>
<td>Pyroclastic Activity</td>
</tr>
<tr>
<td>147</td>
<td>CASE STUDY 5.1 Mount Unzen</td>
</tr>
<tr>
<td>148</td>
<td>Poisonous Gases</td>
</tr>
<tr>
<td>149</td>
<td>Debris Flows, Mudflows, and Volcanic landslides</td>
</tr>
<tr>
<td>151</td>
<td>CASE STUDY 5.2 Volcanic Landslides and Tsunamis</td>
</tr>
<tr>
<td>152</td>
<td>CASE STUDY 5.3 Mount St. Helens 1980–2010: From Lateral Blasts to Lava Flows</td>
</tr>
</tbody>
</table>
5.5. Linkages Between Volcanoes and Other Natural Hazards
5.6. Natural Service Functions of Volcanoes
 Volcanic Soils
 Geothermal Power
 Mineral Resources
 Recreation
 Creation of New Land
5.7. Human Interactions with Volcanoes
5.8. Minimizing the Volcanic Hazard
 Forecasting
 Volcanic Alert or Warning
 CASE STUDY 5.4 Professional Profile: Chris Eisinger, Student of Active Volcanoes
5.9. Perception of and Adjustment to the Volcanic Hazard
 Perception of Volcanic Hazards
 CASE STUDY 5.5 Survivor Story: A Close Call with Mount St. Helens
 Adjustments to Volcanic Hazards
 Attempts to Control Lava Flows
 Applying the 5 Fundamental Concepts
 Concepts in Review
 Critical Thinking Questions
6. Flooding
6.1. An Introduction to Rivers
 Earth Material Transported by Rivers
 River Velocity, Discharge, Erosion, and Sediment Deposition
 Channel Patterns and Floodplain Formation
6.2. Flooding
 Introduction
 Magnitude and Frequency of Floods
 Flash Floods of Zone 1
 CASE STUDY 6.1 Survivor Story: Flash Flood
 Downstream Floods of Zone 2
 CASE STUDY 6.2 Mississippi River Floods of 1973–2008: Zone 2 Floods
 Downstream Floods of Zone 3: Alluvial Fans and Deltas
 CASE STUDY 6.3 Flooding on the Delta of the Ventura River
 Megafloods
6.3. Geographic Regions at Risk for Flooding
6.4. Effects of Flooding and Linkages Between Floods and Other Hazards
6.5. Natural Service Functions of Floods
 Fertile Lands
 Aquatic Ecosystems
 Sediment Supply
 CASE STUDY 6.4 Experimental Floods on the Colorado River
6.6. Human Interaction with Flooding
 Land Use Changes
6.7. Minimizing the Flood Hazard
- The Structural Approach
- Channel Restoration: Alternative to Channelization

6.8. Perception of and Adjustment to the Flood Hazard
- Perception of the Flood Hazard
- CASE STUDY 6.5 Professional Profile: Nicholas Pinter, Southern Illinois University
- Adjustments to the Flood Hazard
- Personal Adjustment: What to Do and What Not to Do
- Applying the 5 Fundamental Concepts
- Concepts in Review
- Critical Thinking Questions

7. Mass Wasting
7.1. An Introduction to Landslides
- Slope Processes
- Types of Landslides
- Forces on Slopes
- CASE STUDY 7.1 A Closer Look: Forces on Slopes
- CASE STUDY 7.2 Portuguese Bend, California
- Snow Avalanches

7.2. Geographic Regions at Risk from Landslides
7.3. Effects of Landslides and Linkages with Other Natural Hazards
- Effects of Landslides
- Linkages Between Landslides and Other Natural Hazards
- CASE STUDY 7.3 Survivor Story: Landslide in Colorado
- CASE STUDY 7.4 Professional Profile: Bob Rasely, Mass Wasting Specialist

7.4. Natural Service Functions of Landslides
7.5. Human Interaction with Landslides
- Timber Harvesting and Landslides
- Urbanization and Landslides
- CASE STUDY 7.5 Rio de Janeiro, Brazil

7.6. Minimizing the Landslide Hazard
- Identifying Potential Landslides
- Preventing Landslides
- Landslide Warning Systems

7.7. Perception of and Adjustment to the Landslide Hazard
- Perception of the Landslide Hazard
- Adjustment to the Landslide Hazard
- Personal Adjustments: What You Can Do to Minimize Your Landslide Hazard
- Applying the 5 Fundamental Concepts
- Concepts in Review
- Critical Thinking Questions

8. Subsidence and Soils
8.1. Soil and Hazards
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>Soil Horizons</td>
</tr>
<tr>
<td>250</td>
<td>Soil Color</td>
</tr>
<tr>
<td>252</td>
<td>Soil Texture</td>
</tr>
<tr>
<td>252</td>
<td>Relative Soil Profile Development</td>
</tr>
<tr>
<td>254</td>
<td>Water in Soils</td>
</tr>
<tr>
<td>254</td>
<td>Classifying Soils</td>
</tr>
<tr>
<td>256</td>
<td>Soil Erosion as a Hazard</td>
</tr>
<tr>
<td>256</td>
<td>CASE STUDY 8.1 Haiti and Soil Erosion</td>
</tr>
<tr>
<td>258</td>
<td>8.2. Introduction to Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>258</td>
<td>Karst</td>
</tr>
<tr>
<td>261</td>
<td>Thermokarst</td>
</tr>
<tr>
<td>261</td>
<td>Sediment and Soil Compaction</td>
</tr>
<tr>
<td>262</td>
<td>CASE STUDY 8.2 Survivor Story: Sinkhole Drains Lake</td>
</tr>
<tr>
<td>263</td>
<td>CASE STUDY 8.3 Mississippi River Delta</td>
</tr>
<tr>
<td>268</td>
<td>Subsidence</td>
</tr>
<tr>
<td>268</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>265</td>
<td>Underground Drainage of Magma</td>
</tr>
<tr>
<td>266</td>
<td>Expansive Soils</td>
</tr>
<tr>
<td>266</td>
<td>Frost-Susceptible Soils</td>
</tr>
<tr>
<td>268</td>
<td>8.3. Geographic Regions at Risk for Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>269</td>
<td>8.4. Effects of Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>269</td>
<td>Sinkhole Formation</td>
</tr>
<tr>
<td>270</td>
<td>Changes in Groundwater Conditions</td>
</tr>
<tr>
<td>270</td>
<td>Damage Caused by Melting Permafrost</td>
</tr>
<tr>
<td>271</td>
<td>Coastal Flooding and Loss of Wetlands</td>
</tr>
<tr>
<td>271</td>
<td>Damage Caused by Soil Volume Change</td>
</tr>
<tr>
<td>272</td>
<td>8.5. Linkages Between Subsidence, Soil Volume Change, and Other Natural Hazards</td>
</tr>
<tr>
<td>273</td>
<td>8.6. Natural Service Functions of Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>273</td>
<td>Water Supply</td>
</tr>
<tr>
<td>273</td>
<td>Aesthetic and Scientific Resources</td>
</tr>
<tr>
<td>273</td>
<td>Unique Ecosystems</td>
</tr>
<tr>
<td>274</td>
<td>8.7. Human Interaction with Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>274</td>
<td>Fluid Withdrawal</td>
</tr>
<tr>
<td>274</td>
<td>Underground Mining</td>
</tr>
<tr>
<td>276</td>
<td>Melting Permafrost</td>
</tr>
<tr>
<td>276</td>
<td>Restricting Deltaic Sedimentation</td>
</tr>
<tr>
<td>276</td>
<td>Altering Surface Drainage</td>
</tr>
<tr>
<td>276</td>
<td>Poor Landscaping Practices</td>
</tr>
<tr>
<td>277</td>
<td>CASE STUDY 8.4 Professional Profile: Helen Delano, Environmental Geologist</td>
</tr>
<tr>
<td>278</td>
<td>8.8. Minimizing Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>279</td>
<td>8.9. Perception of and Adjustment to Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>279</td>
<td>Perception of Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>279</td>
<td>Adjustment to Subsidence and Soil Volume Change</td>
</tr>
<tr>
<td>280</td>
<td>Applying the 5 Fundamental Concepts</td>
</tr>
<tr>
<td>282</td>
<td>Concepts in Review</td>
</tr>
</tbody>
</table>
9. Atmospheric Processes and Severe Weather

9.1. Energy
 Types of Energy
 Heat Transfer

9.2. Earth's Energy Balance
 Electromagnetic Energy
 Energy Behavior

9.3. The Atmosphere
 Composition of the Atmosphere
 Structure of the Atmosphere

9.4. Weather Processes
 Atmospheric Pressure and Circulation
 Unstable Air
 CASE STUDY 9.1 A Closer Look: Coriolis Effect
 Fronts

9.5. Hazardous Weather and Geographic Regions at Risk
 Thunderstorms
 CASE STUDY 9.2 Professional Profile: Sarah Tessendorf, Severe Storm Meteorologist
 Tornadoes
 CASE STUDY 9.3 Survivor Story: Struck by Lightning
 CASE STUDY 9.4 Tri-State Tornado
 Blizzard and Ice Storms
 CASE STUDY 9.5 The Great Northeastern Ice Storm of 1998
 Fog
 Drought
 Mountain Windstorms
 Dust Storms and Sandstorms
 Heat Waves

9.6. Human Interaction with Weather
 CASE STUDY 9.6 Europe's Hottest Summer in More Than 500 Years

9.7. Linkages with Other Hazards

9.8. Natural Service Functions of Severe Weather

9.9. Minimizing Severe Weather Hazards
 Forecasting and Predicting Weather Hazards
 Adjustment to the Severe Weather Hazard
 Applying the 5 Fundamental Concepts
 Concepts in Review
 Critical Thinking Questions

10. Hurricanes and Extratropical Cyclones

10.1. Introduction to Cyclones
 Classifying Cyclones
 Naming Cyclones

10.2. Cyclone Development and Movement
 Tropical Cyclones
 Extratropical Cyclones
CASE STUDY 10.1 A Closer Look: North Atlantic Oscillation

CASE STUDY 10.2 Hurricane Katrina: "The most anticipated natural disaster in American history"

10.3. Geographic Regions at Risk for Cyclones

CASE STUDY 10.3 Survivor Story: Hurricane Katrina

10.4. Effects of Cyclones

Storm Surge

High Winds

Heavy Rains

10.5. Linkages Between Cyclones and Other Natural Hazards

10.6. Natural Service Functions of Cyclones

10.7. Human Interaction with Cyclones

10.8. Minimizing the Effects of Cyclones

Forecasts and Warnings

CASE STUDY 10.4 Professional Profile: The Hurricane Hunters

10.9. Perception of and Adjustment to Cyclones

Perception of Cyclones

Adjustment to Hurricanes and Extratropical Cyclones

Applying the 5 Fundamental Concepts

Concepts in Review

Critical Thinking Questions

11. Coastal Hazards

11.1. Introduction to Coastal Hazards

11.2. Coastal Processes

Waves

Beach Form and Processes

11.3. Sea-Level Change

11.4. Geographic Regions at Risk from Coastal Hazards

11.5. Effects of Coastal Processes

Rip Currents

CASE STUDY 11.1 Survivor Story: Rip Current: Two Experienced Swimmers Rescued on Florida Beach

CASE STUDY 11.2 Professional Profile: Rob Thieler, Marine Geologist

Coastal Erosion

11.6. Linkages Between Coastal Processes and Other Natural Hazards

11.7. Natural Service Functions of Coastal Processes

11.8. Human Interaction with Coastal Processes

The Atlantic Coast

CASE STUDY 11.3 Maryland Barrier Islands

The Gulf Coast

The Pacific Coast

The Great Lakes

Canadian Seacoasts

11.9. Minimizing the Effects of Coastal Hazards

Hard Stabilization

Soft Stabilization

11.10. Perception of and Adjustment to Coastal Hazards
12. Climate and Climate Change

12.1. Global Change and Earth System Science: An Overview

12.2. Climate and Weather

- Climate Zones
- Earth Climate System and Natural Processes

12.3. The Atmosphere and the Cryosphere

- Atmospheric Composition
- Glaciations

12.4. How We Study Past Climate Change and Make Predictions

12.5. Global Warming

- The Greenhouse Effect
- Global Temperature Change
- Why Does Climate Change?

- Solar Forcing
- Volcanic Forcing
- Anthropogenic Forcing

12.6. Potential Effects of Global Climate Change

- Glaciers and Sea Ice

12.7. Predicting the Future Climate

- What Does Our Recent History Tell Us About Potential Consequences of Future Global Warming?

12.8. Strategies for Reducing the Impact of Global Warming

- Abrupt Climate Change
- Applying the 5 Fundamental Concepts

13. Wildfires

13.1. Introduction to Wildfire

13.2. Wildfire as a Process
449 Fire Environment
451 Types of Fires
452 13.3. Geographic Regions at Risk from Wildfires
452 13.4. Effects of Wildfires and Linkages with Other Natural Hazards
452 Effects on the Geologic Environment
454 CASE STUDY 13.3 Wildfire and Flooding in Southern California
456 Effects on the Atmospheric Environment
457 Linkages with Climate Change
458 Effects on the Biological Environment
459 13.5. Natural Service Functions of Wildfires
459 Benefits to Soil
460 Benefits to Plants and Animals
460 CASE STUDY 13.4 Yellowstone Fires of 1988
460 13.6. Minimizing the Wildfire Hazard
461 Fire Management
462 13.7. Perception of and Adjustment to the Wildfire Hazard
462 Perception of the Wildfire Hazard
463 CASE STUDY 13.5 Professional Profile: Firefighter Bob Krans
463 Adjustments to the Wildfire Hazard
464 Personal Adjustment to the Fire Hazard
465 CASE STUDY 13.6 Survivor Story: Two Wildfires in the Hills above Santa Barbara, California
467 Applying the 5 Fundamental Concepts
469 Concepts in Review
471 Critical Thinking Questions
472 14. Impacts and Extinctions
474 14.1. Earth’s Place in Space
474 Asteroids, Meteoroids, and Comets
478 CASE STUDY 14.1 Survivor Story: Meteorites in Chicagoland
478 14.2. Airbursts and Impacts
478 CASE STUDY 14.2 The Tunguska Event
480 Impact Craters
483 Uniformitarianism, Gradualism, and Catastrophism
485 14.3. Mass Extinctions
486 CASE STUDY 14.3 K-Pg Boundary Mass Extinction
490 CASE STUDY 14.4 Possible Extraterrestrial Impact and Mass Extinction 12,800 Years Ago
492 14.4. Linkages with Other Natural Hazards
493 CASE STUDY 14.5 Professional Profile: Emeritus Professor James Kennet, University of California, Santa Barbara
494 14.5. Minimizing the Impact Hazard
494 Risk Related to Impacts
495 Minimizing the Impact Hazard
497 Applying the 5 Fundamental Concepts
500 Concepts in Review
501 Critical Thinking Questions
502 Appendix A. Minerals
Rebecca Dial

From: Roger Berger
Sent: Thursday, April 02, 2015 1:40 PM
To: Rebecca Dial
Cc: Roger Berger
Subject: RE: General Studies Renewal

Rebecca

Your General Studies renewal for GLG 110 is fine with the School of Mathematical and Natural Sciences. It corresponds, in general terms, with the course as it is taught by our School. Thank you for preparing this paperwork.

Please forgive my slow response.

Roger

**
Roger L. Berger, Professor & Director
School of Mathematical and Natural Sciences
Arizona State University
Office: FAB N151
Email: roger.berger@asu.edu
Phone: 602-543-8545

From: Rebecca Dial
Sent: Thursday, April 02, 2015 10:01 AM
To: Roger Berger
Subject: RE: General Studies Renewal

Hi Professor Berger,
I just wanted to check-in and see if you have any questions regarding our GLG110 proposal.

Thank you!

Becca Dial
Academic Support Specialist
School of Earth and Space Exploration
PO Box 876004
Tempe, AZ 85287-6004
Email: bdial@asu.edu
Phone: 480-965-2213

From: Rebecca Dial
Sent: Monday, March 23, 2015 1:13 PM
To: Roger Berger
Subject: RE: General Studies Renewal

Hi Professor Berger,
Attached is the paperwork that our faculty member has prepared for GLG110. If you are comfortable moving forward, please send us a statement of approval. If there are any changes that need to be made or if you have any questions, please let me know.

Thank you!

Becca Dial
Academic Support Specialist
School of Earth and Space Exploration
PO Box 876004
Tempe, AZ 85287-6004
Email: bdial@asu.edu
Phone: 480-965-2213

From: Roger Berger
Sent: Tuesday, March 17, 2015 5:20 PM
To: Rebecca Dial
Cc: Lara Ferry; Roger Berger
Subject: RE: General Studies Renewal

Ms. Dial

Lara Ferry forwarded your email to me. Thank you for contacting us. Yes, we teach GLG110 occasionally, but we are comfortable with you preparing the paperwork. Please send the completed proposal to me, and I will look it over and (I anticipate) offer my support.

Roger

**

Roger L. Berger, Professor & Director
School of Mathematical and Natural Sciences
Arizona State University
Office: FAB N151
Email: roger.berger@asu.edu
Phone: 602-543-8545

From: Lara Ferry
Sent: Tuesday, March 17, 2015 5:14 PM
To: Roger Berger
Subject: Fwd: General Studies Renewal

Would this go to you?

Lara Ferry, PhD

Begin forwarded message:

From: Rebecca Dial <Rebecca.Escobar@asu.edu>
Date: March 17, 2015 at 2:57:03 PM MST
To: Lara Ferry <Lara.Ferry@asu.edu>
Subject: General Studies Renewal
Hi Lara,
I'm an academic specialist in the School of Earth and Space Exploration at ASU's Tempe campus. I'm trying to locate the person in the Math and Natural Sciences Division who is in charge of general studies renewal proposals. Our course GLG110 (Dangerous World) currently counts as an SG and G and we need to submit a proposal to renew the G designation. When I look in the catalog I see that your college is listed as one of the units offering it as well. We teach the course practically every semester and I'm currently collecting the required paperwork from our faculty member who teaches it the majority of the time. I will need to get a statement of approval from your academic unit supporting the proposal. I wanted to reach out and find out who is the correct person I need to speak with regarding this matter. If it isn't you, I apologize and I hope you can point me in the right direction.

If you have any questions, please let me know. Thank you for your time.

Becca Dial
Academic Support Specialist
School of Earth and Space Exploration
PO Box 876004
Tempe, AZ 85287-6004
Email: bdial@asu.edu
Phone: 480-965-2213