ARIZONA STATE UNIVERSITY
GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:
Copy and paste current course information from Class Search/Course Catalog.

Academic Unit College of Health Solutions Department Biomedical Informatics

Subject BMI Number 482 Title Capstone I Units: 3

Is this a cross-listed course? No

If yes, please identify course(s)

Is this a shared course? (choose one) If so, list all academic units offering this course

Course description:

Requested designation: Literacy and Critical Inquiry-L
Note - a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university's review and approval process.
For the rules governing approval of omnibus courses, contact the General Studies Program Office at (480) 965-0739.

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area
requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two
core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies
course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
• Literacy and Critical Inquiry core courses (L)
• Mathematics core courses (MA)
• Computer/statistics/quantitative applications core courses (CS)
• Humanities, Fine Arts and Design core courses (HU)
• Social and Behavioral Sciences core courses (SB)
• Natural Sciences core courses (SO/SG)
• Global Awareness courses (G)
• Historical Awareness courses (H)
• Cultural Diversity in the United States courses (C)

A complete proposal should include:
☒ Signed General Studies Program Course Proposal Cover Form
☒ Criteria Checklist for the area
☒ Course Syllabus
☒ Table of Contents from the textbook, and/or lists of course materials

Contact information:
Name Laura Kaufman

Mail code 6520

E-mail: Laura.Kaufman@asu.edu

Department Chair/Director approval: (Required)
Chair/Director name (Typed): Dr. George Runger

Chair/Director (Signature):

Date: 9/16/13

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/12/11, 7/12
Proposer: Please complete the following section and attach appropriate documentation.

ASU - [L] CRITERIA

TO QUALIFY FOR [L] DESIGNATION, THE COURSE DESIGN MUST PLACE A MAJOR EMPHASIS ON COMPLETING CRITICAL DISCOURSE—AS EVIDENCED BY THE FOLLOWING CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
</table>

CRITERION 1: At least 50 percent of the grade in the course should depend upon writing, including prepared essays, speeches, or in-class essay examinations. *Group projects are acceptable only if each student gathers, interprets, and evaluates evidence, and prepares a summary report.*

1. Please describe the assignments that are considered in the computation of course grades—and indicate the proportion of the final grade that is determined by each assignment.

2. Also:

 Please *circle, underline, or otherwise mark* the information presented in the most recent course syllabus (or other material you have submitted) that verifies *this description* of the grading process—and label this information “C-1”.

CRITERION 2: The composition tasks involve the gathering, interpretation, and evaluation of evidence

1. Please describe the way(s) in which this criterion is addressed in the course design.

2. Also:

 Please *circle, underline, or otherwise mark* the information presented in the most recent course syllabus (or other material you have submitted) that verifies *this description* of the grading process—and label this information “C-2”.

CRITERION 3: The syllabus should include a minimum of two substantial writing or speaking tasks, other than or in addition to in-class essay exams

1. Please provide relatively detailed descriptions of two or more substantial writing or speaking tasks that are included in the course requirements.

2. Also:

 Please *circle, underline, or otherwise mark* the information presented in the most recent course syllabus (or other material you have submitted) that verifies *this description* of the grading process—and label this information “C-3”.

BMI 482 Syllabus
ASU - [L] CRITERIA

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>✘</td>
<td></td>
<td>CRITERION 4: These substantial writing or speaking assignments should be arranged so that the students will get timely feedback from the instructor on each assignment in time to help them do better on subsequent assignments. Intervention at earlier stages in the writing process is especially welcomed</td>
</tr>
</tbody>
</table>

1. Please describe the sequence of course assignments—and the nature of the feedback the current (or most recent) course instructor provides to help students do better on subsequent assignments.

2. Also:

 Please **circle, underline, or otherwise mark** the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading process—and label this information "C-4".
<table>
<thead>
<tr>
<th>Course Prefix</th>
<th>Number</th>
<th>Title</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>482</td>
<td>Biomedical Informatics Capstone I</td>
<td></td>
</tr>
</tbody>
</table>

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Each student will have 3 individual written assignments identifying and addressing key information for the Biomedical Informatics problem they are trying to solve, the available solutions, and the strengths and weaknesses of the potential solutions. Each student will be responsible for weekly/bi-weekly group reports and presentations, oral and written. Each student develop and produce a written project report by the end of the semester encompassing the entire semester of research.</td>
<td>See the highlighted section of the syllabus identifying points for the written assignments, group reports and presentations (oral and written) and written project report. These highlighted assessments comprise 60% of the total course grade. Additional writing is required during the design documentation.</td>
</tr>
<tr>
<td>2</td>
<td>Each student will gather information relative to the problem, interpret data and prior research, and evaluate possible solutions to the Biomedical Informatics problem selected. Each student will gather, interpret and evaluate peer research and presentations, evaluating evidence and providing feedback and evaluate possible solutions to a Biomedical Informatics problem.</td>
<td>See the highlighted section of the syllabus. Outlined are project design documentation, peer evaluations, and creating a project prototype.</td>
</tr>
<tr>
<td>3</td>
<td>Each student will complete 3 individual written assignments, in addition to a final written project report. Each student will also develop and present weekly/bi-weekly group reports and presentations, oral and written</td>
<td>See the highlighted portions of the syllabus.</td>
</tr>
<tr>
<td>4</td>
<td>The individual written assignments, written project report and all other assignments throughout the semester will be graded immediately after being submitted and timely feedback will be provided.</td>
<td>See the highlighted portions of the syllabus.</td>
</tr>
</tbody>
</table>
BMI 482 Biomedical Informatics, Capstone I

Course Syllabus
Instructor: Dr. George Runger, 480-884-0220
Office Hours: TBD
Class Meeting: TBD

Teaching Assistant: TBD
TA Office Hours: TBD

Optional References: Additional Course readings to be determined

Prerequisites: Must be a senior BMI student and have completed ENG 101 with a C or better, and BMI 312 with a grade of B- or better.

Course Description: This class is the first of a two semester senior capstone project course. In BMI 482, students will plan the capstone project executed in the second capstone course, BMI 483.

Learning Objectives: Upon completing BMI 482, students will understand the requirements for working collaboratively in a research context to gather requirements and clarify a problem in Biomedical Informatics, designing alternative solutions, selecting a best alternative, writing project communications including three 8-10 page written assignments and a 10-12 page final report, giving oral presentations, and possibly handling project focus changes. (C-2)

Catalog Description: First of two courses in capstone sequence for biomedical informatics majors emphasizing the development of technical skills and effective team work within the context of a research project in biomedical informatics.

Course learning outcomes:

1. Plan and manage activities for a substantial biomedical informatics research project
2. Work collaboratively in a research context to gather requirements and clarify a problem
3. Critically analyze proposed solutions to a problematic
4. Use current techniques, skills and tools to design, implement and validate a solution to a biomedical informatics research problem
5. Communicate technical concepts and material effectively both orally and in writing.
6. Work effectively within the context of a research team.
Course assessment plan: (C-1)

Individual written assignments of 8-10 pages each (3) – 15%
These assignments will be assessed for prompt feedback (immediate oral feedback and 2-day turnaround in writing) in order for each student to make modifications needed relative to the development of the final project (C-4)

Weekly/bi-weekly group reports and presentations – oral and written – 15%
Project requirements and design documentation – 20%
Peer evaluations – 10%
Project prototype – 10%
Written project report, 10-12 pages – 30%
These assignments will be assessed for prompt feedback (immediate oral feedback and 2-day turnaround in writing) in order for each student to make modifications needed relative to the development of the final project (C-4)

Grades will be assigned based on the scale 90%+ = A, 80%-89% = B, etc. Plus/minus grades will be assigned.

Major topics and time covered:
1. Requirements gathering and representation, reviewing use cases, tool selection (3 weeks)
2. Leadership and Team Building (2 weeks)
3. Oral and team presentations and peer assessment (1 week)
4. Laying out design alternatives and choosing those appropriate to project (3 weeks)
5. Creating a test plan and how to do an evaluation and select appropriate tools (3 weeks)
6. Resume writing and interviewing techniques (2 weeks)

Document History:
<table>
<thead>
<tr>
<th>Course coordinator</th>
<th>Creation date</th>
<th>TAC approval date</th>
<th>UPC/GPC approval date</th>
</tr>
</thead>
</table>

Biomedical Informatics, Capstone I Syllabus
Contents

Series Preface vii
Preface to the Third Edition ix
Acknowledgments xvii
Contributors xxiii
Color Insert, facing page 374

UNIT I RECURRENT THEMES IN BIOMEDICAL INFORMATICS

CHAPTER 1 The Computer Meets Medicine and Biology: Emergence of a Discipline 3
Edward H. Shortliffe and Marsden S. Blois

CHAPTER 2 Biomedical Data: Their Acquisition, Storage, and Use 46
Edward H. Shortliffe and G. Octo Barnett

CHAPTER 3 Biomedical Decision Making: Probabilistic Clinical Reasoning 80
Douglas K. Owens and Harold C. Sox

CHAPTER 4 Cognitive Science and Biomedical Informatics 133
Vimala L. Patel and David R. Kaufman

CHAPTER 5 Essential Concepts for Biomedical Computing 186
Gio Wiederhold and Thomas C. Rindfleisch

CHAPTER 6 System Design and Engineering in Health Care 233
Gio Wiederhold and Edward H. Shortliffe

CHAPTER 7 Standards in Biomedical Informatics 265
W. Edward Hammond and James J. Cimino

CHAPTER 8 Natural Language and Text Processing in Biomedicine 312
Carol Friedman and Stephen B. Johnson

CHAPTER 9 Imaging and Structural Informatics 344
James F. Brinkley and Robert A. Greenes

CHAPTER 10 Ethics and Health Informatics: Users, Standards, and Outcomes 379
Kenneth W. Goodman and Randolph A. Miller
UNIT II BIOMEDICAL INFORMATICS APPLICATIONS

CHAPTER 12 Electronic Health Record Systems 447
Paul C. Tang and Clement J. McDonald

CHAPTER 13 Management of Information in Healthcare Organizations 476
Lynn Harold Vogel and Leslie E. Perreault

CHAPTER 14 Consumer Health Informatics and Telehealth 511
Patricia Flatley Brennan and Justin B. Starren

CHAPTER 15 Public Health Informatics and the Health Information Infrastructure 537
William A. Yasnoff, Patrick W. O’Carroll, and Andrew Friede

CHAPTER 16 Patient-Care Systems 564
Judy G. Osbalt and Suzanne Bakken

CHAPTER 17 Patient-Monitoring Systems 585
Reed M. Gardner and M. Michael Shabot

CHAPTER 18 Imaging Systems in Radiology 626
Robert A. Greens and James F. Brinkley

CHAPTER 19 Information Retrieval and Digital Libraries 660
William Hersh, P. Zoë Sueri, and William M. Detner

CHAPTER 20 Clinical Decision-Support Systems 698
Mark A. Musen, Yuvat Shabat, and Edward H. Shortliffe

CHAPTER 21 Computers in Medical Education 737
Parvati Dev, Edward P. Hoffer, and G. Octo Barnett

CHAPTER 22 Bioinformatics 763
Russ B. Altman and Sean D. Mooney

UNIT III BIOMEDICAL INFORMATICS IN THE YEARS AHEAD

CHAPTER 23 Health Care Financing and Information Technology: A Historical Perspective 793
Sara J. Singer, Alain C. Entwoven, and Alan M. Garber
CHAPTER 24 The Future of Computer Applications in Biomedicine 829
Lawrence M. Fagan and Edward H. Shortliffe

Bibliography 849
Glossary 915
Name Index 1003
Subject Index 1017