

Rev. 1/94, 4/95, 7/98, 4/00, 1/02, 10/08, 11/11/ 12/11, 7/12

GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:
Copy and paste current course information from Class Search/Course Catalog.

Academic Unit
College of Technology &
Innovation Department Engineering and Computing Systems

Subject SER Number 216 Title Software Enterprise II: Testing and Quality Units: 3

Is this a cross-listed course?
If yes, please identify course(s)

No

Is this a shared course? No If so, list all academic units offering this course

Course description:

Requested designation: Literacy and Critical Inquiry–L
Note- a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university’s review and approval process.
For the rules governing approval of omnibus courses, contact the General Studies Program Office at (480) 965–0739.

Area(s) proposed course will serve:
 A single course may be proposed for more than one core or awareness area. A course may satisfy a core area
 requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two
 core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies
 course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
 Complete and attach the appropriate checklist

• Literacy and Critical Inquiry core courses (L)
• Mathematics core courses (MA)
• Computer/statistics/quantitative applications core courses (CS)
• Humanities, Fine Arts and Design core courses (HU)
• Social and Behavioral Sciences core courses (SB)
• Natural Sciences core courses (SQ/SG)
• Global Awareness courses (G)
• Historical Awareness courses (H)
• Cultural Diversity in the United States courses (C)

A complete proposal should include:
 Signed General Studies Program Course Proposal Cover Form
 Criteria Checklist for the area
 Course Syllabus
 Table of Contents from the textbook and list of required readings/books

Contact information:

Name Dr. Timothy Lindquist Phone 480-727-2783

Mail code

 E-mail: Timothy.Lindquist@asu.edu

Department Chair/Director approval: (Required)

Chair/Director name (Typed): Dr. Ann McKenna Date: 10/10/13

Chair/Director (Signature):

SER 216 - Software Enterprise II: Testing & Quality

Course description: Project-centered course covering testing and quality in software engineering;

concepts, tools, and methods in testing and quality management; teamwork and communication in

software engineering. Project based.

Arizona State University Criteria Checklist for

LITERACY AND CRITICAL INQUIRY - [L]

Rationale and Objectives

Literacy is here defined broadly as communicative competence in written and oral discourse. Critical
inquiry involves the gathering, interpretation, and evaluation of evidence. Any field of university study
may require unique critical skills which have little to do with language in the usual sense (words), but the
analysis of spoken and written evidence pervades university study and everyday life. Thus, the General
Studies requirements assume that all undergraduates should develop the ability to reason critically and
communicate using the medium of language.

The requirement in Literacy and Critical Inquiry presumes, first, that training in literacy and critical inquiry
must be sustained beyond traditional First Year English in order to create a habitual skill in every student;
and, second, that the skills become more expert, as well as more secure, as the student learns challenging
subject matter. Thus, the Literacy and Critical Inquiry requirement stipulates two courses beyond First
Year English.

Most lower-level [L] courses are devoted primarily to the further development of critical skills in reading,
writing, listening, speaking, or analysis of discourse. Upper-division [L] courses generally are courses in a
particular discipline into which writing and critical thinking have been fully integrated as means of learning
the content and, in most cases, demonstrating that it has been learned.

Students must complete six credit hours from courses designated as [L], at least three credit hours of which
must be chosen from approved upper-division courses, preferably in their major. Students must have
completed ENG 101, 107, or 105 to take an [L] course.

Notes:

1. ENG 101, 107 or ENG 105 must be prerequisites
2. Honors theses, XXX 493 meet [L] requirements
3. The list of criteria that must be satisfied for designation as a Literacy and Critical Inquiry [L] course

is presented on the following page. This list will help you determine whether the current version of
your course meets all of these requirements. If you decide to apply, please attach a current syllabus,
or handouts, or other documentation that will provide sufficient information for the General Studies
Council to make an informed decision regarding the status of your proposal.

Literacy and Critical Inquiry [L]
Page 2

Proposer: Please complete the following section and attach appropriate documentation.

ASU - [L] CRITERIA
TO QUALIFY FOR [L] DESIGNATION,THE COURSE DESIGN MUST PLACE A
MAJOR EMPHASIS ON COMPLETING CRITICAL DISCOURSE--AS EVIDENCED BY
THE FOLLOWING CRITERIA:

YES NO
Identify
Documentation
Submitted

CRITERION 1:CRITERION 1:
 At least 50 percent of the grade in the course should depend
upon writing, including prepared essays, speeches, or in-class
essay examinations. Group projects are acceptable only if each
student gathers, interprets, and evaluates evidence, and prepares
a summary report

 Course Syllabus,
Assignment
Description & Grading
Rubric

1. Please describe the assignments that are considered in the computation of course grades--and indicate
the proportion of the final grade that is determined by each assignment.

2. Also:

 C-1

 CRITERION 2:CRITERION 2: The composition tasks involve the
gathering, interpretation, and evaluation of evidence

 Testing tools survey
activity of Final
Project (described in
CourseProjectDescripti
on)

1. Please describe the way(s) in which this criterion is addressed in the course design

2. Also:

 C-2

CRITERION 3:CRITERION 3: The syllabus should include a
minimum of two substantial writing or speaking tasks, other
than or in addition to in-class essay exams

 Course Syllabus

1. Please provide relatively detailed descriptions of two or more substantial writing or speaking tasks that
 are included in the course requirements
2. Also:

 C-3

Please circle, underline, or otherwise mark the information presented in
the most recent course syllabus (or other material you have submitted) that
verifies this description of the grading process--and label this information
"C-1".

Please circle, underline, or otherwise mark the information presented in
the most recent course syllabus (or other material you have submitted) that
verifies this description of the grading process--and label this information
"C-2".

Please circle, underline, or otherwise mark the information presented in
the most recent course syllabus (or other material you have submitted) that
verifies this description of the grading process--and label this information
"C-3".

Literacy and Critical Inquiry [L]
Page 3

ASU - [L] CRITERIA
YES NO

Identify
Documentation
Submitted

CRITERION 4:CRITERION 4: These substantial writing or speaking
assignments should be arranged so that the students will get
timely feedback from the instructor on each assignment in time to
help them do better on subsequent assignments. Intervention at
earlier stages in the writing process is especially welcomed

GradingRubric is used
for all
activities. These are
used for grading and
additional feedback
will be provided to the
students within 2
weeks of assignment
submission (attached
and referenced rubrics
and course
syllabus). The project
has multiple
deliverables that occur
at different times
during the second half
of the semester. The
project description
clearly states the
deliverables and due
dates for each task.
The reading &
summarizing
assignments,
homework
assignments happen
during the first half of
the semester.

1. Please describe the sequence of course assignments--and the nature of the feedback the current (or
most recent) course instructor provides to help students do better on subsequent assignments

2. Also:

 C-4

Please circle, underline, or otherwise mark the information presented in
the most recent course syllabus (or other material you have submitted) that
verifies this description of the grading process--and label this information
"C-4".

Literacy and Critical Inquiry [L]
Page 4

Course Prefix Number Title Designation
SER 216 Software Enterprise II: Testing & Quality L

Explain in detail which student activities correspond to the specific designation criteria.
Please use the following organizer to explain how the criteria are being met.

Criteria (from checksheet) How course meets spirit
(contextualize specific examples

in next column)

Please provide detailed
evidence of how course meets
criteria (i.e., where in syllabus)

 C1 51% of the grade is towards
Literacy and Critical Inquiry
activities. These activities are as
follows:
Readings (include writing a
summary) (6%)
Homework Assignments (10%)
Course Project (35%)

The readings & summarizing
assignments, homework
assignments happen during the first
half of the semester.

Activity description and grading
rubric attached.

Course syllabus is also attached.

The homework assignment
includes 2 labs that require
students to fill out a number
forms and use templates
provided to document the
process followed for
implementing the specified
program. The lab description is
attached with highlighting that
indicates these tasks.

C2 As part of the Course project,
students have a to find, use, and
evaluate a number of softare testing
tools. They write an evaluation
report on one of the tools and
present the evaluation of a second
tool to the class. This activity
addresses the criteria about having
a composition task that involves
gathering, interpretation, and
evaluation of evidence. The project
has multiple deliverables that occur
at different times during the second
half of the semester. The project
description clearly states the
deliverables and due dates for each
task.

Course project description and
grading rubric for presentation &
testing tool report and software
test plan template are
attached.

 C3

This course has three substantial
writing assignments (listed below):
1. Reading, critiquing, and
summarizing published articles
2. Creating a test plan for a given
software product 3. Writing a report
on a software testing tool

Activity descriptions along with
grading rubric are attached.

SER 294/216 – Software Enterprise II (Testing & Quality)

Spring 2014

Summary:

Project-centered course covering testing and quality in software engineering; concepts, tools,

and methods in testing and quality management; teamwork and communication in software

engineering.

Course Details:

Time: Tuesday & Thursday 3:00pm - 4:15pm

Location: Peralta 213

Credits: 3

Pre-requisites: SER 215;

Course Description:

SER 216 is the second course taught in the Software Enterprise; Students learn in a

hybrid lecture-lab-project environment in which concepts are learned in a project context.

Projects are team-based and include multiple deliverables and presentations, with a specific

emphasis on testing, validation, and quality assurance.

Instructor:

Name: Srividya Bansal

Email: srividya.bansal@asu.edu

Office: Peralta 230G

Office Hours: Tue: 1:30pm-2:30pm; Thu: 1:30 - 2:30pm; and by appointment on

other days.

Teaching Assistant:

Name: TBA

Email: TBA
Office: Peralta 235

 Office Hours: TBA

mailto:srividya.bansal@asu.edu

Grading:

Assessment Type Weight Points

Mid-term test 15% 150

HWs/Assignments  C-3 35% 350 (7 assignments; 50 points each)

2 assignments satisfy L component (PSP and

Test Case generation assignments)

comprising 10% of the grade  C-1

Readings/Quizzes  C-3 10% 100 (5 readings; 20 points each)

3 readings satisfy L component comprising

6% of the grade C-1

Final Project  C-2, C-3 40% 400

A number of activities in the project satisfy L

component and comprise 35% of the final

grade C-1

Total 1000 points

Text Book:
"Software Engineering" (9th edition) by Ian Sommerville; Publisher: Addison
Wesley; ISBN-10: 0137035152; ISBN-13: 978-0137035151;

Reference Books:

"Software Testing: Principles and Practices" by Srinivasan Desikan,

Gopalaswamy Ramesh; Publisher: Addison Wesley; ISBN-10: 817758295X;

ISBN-13: 978-8177582956

"Introduction to Java Programming, Comprehensive Version" (8th edition) by Y.

Daniel Liang; Publisher: Prentice Hall; ISBN-10: 0136012671; ISBN-13: 978-

0136012672;

Weekly Course Schedule (Tentative):

Week # Lecture Content

Week 1 Class Overview & Introduction

Week 2 Software Planning (PSP1)

Week 3 Software Quality - reviews and inspections (PSP2)

Week 4 Team Software Process (TSP)

Week 5 UML (Use case, Class)

Week 6 UML (Activity, State diagrams)

http://www.amazon.com/Software-Engineering-9th-Ian-Sommerville/dp/0137035152/ref%3Dsr_1_1?ie=UTF8&qid=1313689823&sr=8-1
http://www.amazon.com/Software-Testing-Principles-Srinivasan-Desikan/dp/817758295X
http://www.amazon.com/Introduction-Java-Programming-Comprehensive-8th/dp/0132130807/ref%3Dsr_1_1?s=books&ie=UTF8&qid=1313691084&sr=1-1

Week 7 Software Maintenance and Evolution

Week 8 Principles of Software Testing

Week 9 Unit Testing

Week 10 White Box and Black Box testing

Week 11 Tools for Testing

Week 12 Software Test Plan

Week 13 Integration testing

Week 14 System and Acceptance Testing

Course Policy:

 Students are expected to participate in the educational process and not be a disruptive

element with regard to the learning of others. Safety, self-discipline and respect for

others are necessary elements in the educational processes employed in this course.

All students should be familiar with the Student Code of Conduct, which can be

found at http://www.asu.edu/studentlife/judicial/.

 Ample time will be provided to complete homework assignments. The assignments

should be turned in by the specified deadline. Late programming assignments will not

be accepted unless prior arrangements have been made with the instructor. The only

legitimate reasons are business or university related travel or illness for more than

half the assignment period with appropriate documentation.

 Cell phones must be either set to vibrate, turn the ringer volume off, or turn off the

phone completely. Use of computer or cell phone for chat, texting, and personal (non-

emergency) calls are not allowed. You will be marked absent from class if found

using computers or cell phones for these activities during class.

 It is the student's responsibility to keep a backup of all your assignments and projects.

 Feedback on assignments will be provided within 2 weeks of submission. Grading

rubric will be provided for the assignments along with the specification. This rubric

sheet along with additional feedback on student’s work will be provided. Students

have the right to appeal a grade in writing. Submit your typed appeal with the graded

item, stating the reason for your appeal. All appeals must be turned in no later than

one week after the material has been returned in class.  C-4

 Any students who need special needs or accommodations in this course are

encouraged to communicate these as soon as possible to make appropriate

arrangements for these accommodations.

Course Ethics:

Plagiarism or academic dishonesty in any form will not be tolerated. Punishment can include

a record on the student's transcripts, an E in the course, and/or dismissal from the department.

http://www.asu.edu/studentlife/judicial/

The following exemptions are valid for this course:

 You can discuss the homework with other students. But you are not allowed to copy

someone else's code.

 You are encouraged to help other students fix their syntax errors.

 You can discuss the methods and the algorithm with other students. But do not write

the code (share the code) with the other students.

All the code you submit must be yours. A software tool may be used at times to check for

similarities between submitted assignments. In this class, any cases of suspected violations will

be turned over to the department who will track violations and determine additional

punishment for students and repeat offenders. Punishment can include a record on the student's

transcripts, an E in the course, and/or dismissal from the department. ASU's academic integrity

policies (http://provost.asu.edu/academicintegrity) and the ASU Student Code of Conduct are

provided on ASU's website. If you are not sure if something is really cheating, ask your

professor.

Student learning outcomes:

Students completing SER216 will be able to:

1. appreciate the need for Software quality assurance

2. evaluate various software testing tools  C-3

3. learn fundamentals of Software testing

a. describe error, fault, failure, debugging, and validation correctly

b. create test cases in the correct format

c. use and demonstrate unit testing with JUnit effectively. understand and use code

coverage tools such as EclEmma effectively

4. understand Integration, System, Acceptance testing

a. explain various approaches for Integration testing

b. explain the similarities and differences between integration and system

testing

5. generate test cases using boundary value analysis and equivalence partitioning

6. create UML use case, class, state, and activity diagrams

7. design a Software test plan in the IEEE template format and conduct testing for a

given Software product  C-3

a. choose appropriate approaches for functional testing

b. choose an appropriate approach for integration testing

c. choose appropriate tools for test automation

d. decide correctly which parts of the software product will be manually

tested and which parts will be tested using automation

8. demonstrate working effectively in small teams

9. communicate effectively in writing a technical document, evaluating and presenting

software testing tools, and project presentation  C-3

http://provost.asu.edu/academicintegrity)

Mapping of Program outcomes to student learning outcomes in this course:

Program outcomes SER 216 learning outcomes
Technical outcomes – Software design and
process

Outcomes 2,3,4,5,6,7

Computing practice, Critical thinking,
Decision-making

Outcomes 2,3,4,5,6,7

Problem-solving Outcomes 5,7
Perspective Outcomes 1
Professionalism, Communication Outcomes 8, 9

Mapping of Course topics to student learning outcomes in this course:

Topics Supports learning
outcomes

1 Software Planning Outcomes 1
2 Software Quality Outcomes 1,3
3 UML Modeling Outcomes 6
4 Software Maintenance Outcomes 7
5 Principles of Software Testing Outcomes 3
6 Unit Testing Outcomes 3,5,7
7 Functional Testing (Black box & White box) Outcomes 3,5,7
8 Integration, System, Acceptance Testing Outcomes 4,7
9 Software Testing tools Outcomes 3,7
10 Software Test Plan Outcomes 7

Mapping of Assessments to student learning outcomes in this course:

Assessments Assesses learning
outcomes

1 Software Planning - Lab Outcomes 1
2 Design review - Lab Outcomes 1, 3
3 Code review & Defect tracking - Lab Outcomes 1, 3
4 UML: Use Case & Class diagram - Lab Outcomes 6
5 UML: Activity & State diagram - Lab Outcomes 6
6 Unit Testing: JUnit - Lab Outcomes 2, 3.c
7 Testing & Debugging - Lab Outcomes 3.a, 3.b
8 Code Coverage: EclEmma - Lab Outcomes 2, 3.d
9 UML Quiz Outcome 6
10 Unit Testing Quiz Outcome 3.c
11 Semester Project (Summative) Outcomes 1, 2, 5, 7, 8, 9
12 Mid-term test (Summative) Outcomes 3, 4, 5, 6
13 Survey, Evaluate, & Present 2 testing tools Outcomes 2, 8, 9

SER	
 216	
 Software	
 Enterprise	
 II:	
 Testing	
 and	
 Quality	

Summary of assignments related to literacy requirements/criteria. Criterion 4 is addressed in
separate documents:

Writing Assignment: Reading on Software Review Process (C-1, C-3)
Each student in the class is required to complete the following assignment:
Read the article: "Painless improvements to the review process by IIsakka and Tervonen",
Software Quality Journal 7 (1998), pp. 11-20 (available on Blackboard).
Summarize the article and evaluate its applicability to SER216 software projects. Your
description should include 1-2 pages of narrative and be structured and formatted as discussed in
class. Grading will be done using one of the referenced rubrics. Points: 20 points (2% of course
grade.)

Writing Assignment: Reading on Finding Bugs Using Static Analysis (C1, C3)
Read the article: "Using Static Analysis to Find Bugs by Nathaniel Ayewah, William Pugh,
David Hovemeyer, David Morgenthaler, and John Penix" (available on the course Blackboard
site).
Summarize the article and describe the applicability of the approach to finding bugs in your
SER216 software development project. The narrative should be at least 2 pages in length.
Grading will be done using one of the referenced rubrics. Points: 20 points (2% of course grade.)

Writing Assignment: Reading on Unit Testing (C1, C3)
Read the following article on "The Art of Unit Testing by Manning and Osherove" (available on
the SER216 Blackboard site).
Summarize the article within 1-2 pages of narrative, including a description of how your team
used this approach in testing your semester project. Grading will be done using the references
rubric. Points: 20 points (2% of course grade.)

Presentation & Writing Assignment (Semester Project) (C1,C2).
Student teams are required to select and study two testing tools from a list provided. They are
required to write a report and provide the class with a 20 minute presentation about the tool. Each
member of the team must present at least one aspect of the tool. The presentation includes the
following topics: (a) What testing purpose does it serve? (b) What programming languages and
platforms doe sit support? (c) What is the cost and how can it be acquired? (d) Strengths and
limitations of the tool (e) Usage, setup, and configuration of the tool (f) Demonstrations of the
tool. Points: 80 points (10% of course grade.)

Presentation Assignment: Semester Project Presentation (C2).
Student teams are required to provide the class with a 20 minute presentation of the results of
their semester project. Each member of the team must present at least one aspect of the
presentation. The presentation includes the following topics: (a) Description and demonstration of
software developed, (b) Software system design, (c) Software quality and testing requirements
utilized in developing the project, (d) Defect analysis by software development phase, (e)
Retrospect of the project. Points: 40 points (5% of course grade.)

Writing Assignment: Software Test plan (Semester Project) (C1, C2).
Student teams are required to create a test plan for a given project that includes a detailed

description of various testing activities (e.g., individual test cases), different types of testing, tools
used for testing, description of coverage of the testing effort, etc. Points: 100 points (15% of
course grade.)

Grading of written and oral presentations utilize widely available rubrics for writing and
presentations such as:
Rubrics for Evaluating Writing:
http://www.readwritethink.org/files/resources/lesson_images/lesson782/Rubric.pdf
http://www.smarterbalanced.org/wordpress/wp-content/uploads/2012/05/TaskItemSpecifications/EnglishLanguageArtsLiteracy/ELARubrics.pdf
http://www.middleweb.com/wp-content/uploads/2013/04/Student-Friendly-Writing-Rubric.pdf

Oral Presentations
http://pooh.poly.asu.edu/Ser401/ClassNotes/RubricPresentation.html
http://www.readwritethink.org/files/resources/lesson_images/lesson416/OralRubric.pdf
	

SER 216 Software Enterprise II 1

Software Enterprise II - Course Project

Software Maintenance, Testing & Quality

Instructions:

Through this project you will learn about Software Testing (various tools, creating test plans,
performing testing) and Software Maintenance activities of the software development lifecycle. You
will work in groups of 2-3. Your project submissions should be made via Blackboard before the
specified deadline. You will work through this project in multiple iterations. There are deliverables
at the end of each iteration. Each team will be provided existing software products (an open-source
product, a research software tool, a software game, etc.) that you will work on for Testing and
Maintenance.

1: Testing tools survey
Each team is required to select TWO testing tools from the list provided, each from a different
category of tools (such as Unit Testing, Functional Testing, Defect tracking, Performance, etc.). A
tool not listed here may also be selected upon approval from the instructor. A consolidated list
of open source software testing tools is available at http://www.opensourcetesting.org/. Each
team will present one of the two tools to the class and will provide a written description for the
other one via Blackboard. For each tool, you must download the tool and learn to use it. Your
papers must answer the questions below in the order given.

1. Who (company or individual) developed the tool? What is the cost to the tool user? How
do you acquire it?

2. What testing purpose does the tool serve? (i.e, what problem does it attempt to solve? How
does it improve productivity?)

3. What programming language(s) does the tool support, if any?

4. In what phase of software testing is the tool useful?

5. What do you need to do in order to use the tool?

• How do you install it?
• How do you configure it?
• How do you use it?

6. What are the strengths and limitations of the tool?

Deliverables:
• Written Report on one of the selected tools (submit via Blackboard)
• Presentation to class on the second tool selected (in class)

Due Date: April 4, 2014 (11:59pm) Presentations in class during first week of April.

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Sticky Note
C-1, C-2, C3

skbansa2
Sticky Note
C-1, C-2, C-3

skbansa2
Sticky Note
C1, C-2, C-3

SER 216 Software Enterprise II 2

2: Setup and Execute the project

• Download the source code provided, create an Eclipse project and build it
• Understand how the software works
• Use the software as an end-user

Deliverables:
none

Due Date: April 4, 2014 (11:59pm)

3: Understand the code

• Analyze the code
• Create use case diagram and class diagram for the existing source code. Capture all classes

in the code base. Use a UML tool of your choice to create these diagrams.

Deliverables:
Use Case Diagram and Class Diagram (via Blackboard)

Due Date: April 11, 2014 (11:59pm)

4: Create a Test Plan

• Create a test plan that includes a detailed description of the testing activities (e.g., individual
test cases), a description of the coverage of the testing effort, etc. A template will be provided
in class.

Deliverables:
Submit a Test Plan document (via Blackboard)

Due Date: April 23, 2014 (11:59pm)

5: Perform Testing as per your plan

• Perform testing and create a list of bugs and possible enhancements. From this list you will
identify a few bugs and enhancements (after discussing with your instructor) that you will
fix .

Deliverables:
List of Bugs and Enhancements (via Blackboard)

Due Date: April 23, 2014 (11:59pm)

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Sticky Note
C1, C3

SER 216 Software Enterprise II 3

6: Project presentation
Each team will present their project to the class. Your presentations must answer the following
questions:

1. What is the software product your are working on? What does it do? Who is using it?

2. What are the goals of your testing efforts?

3. What is your test plan?

4. What were the results of your testing? What coverage did you achieve?

5. What did you discover?

6. What are your conclusions?

7. How would you improve your process in the future?

Deliverables:
In-class presentation - Your presentation should be about 15 minutes, and must answer the above
questions. You should provide a brief, convincing demonstration of the tool.

Due Date: During last week of classes

7: Implementation of Bug fixes and enhancements
Implement bug fixes and enhancements that you have identified in the previous step and test the
software thoroughly.

Deliverables:
• Compressed folder that contains the complete source code
• Executable jar file
• Summary of bug-fixes (status of bug-fixes, if an error is not fixed then explain why)

Due Date: Final Exam date (11:59pm)

Grading Rubric:

Deliverable - Testing tool presentation: 40 points
Deliverable - Testing tool report: 40 points
Deliverable - UML Diagrams: 40 points
Deliverable - Software Test plan: 100 points
Deliverable - List of Bugs/Enhancements: 60 points
Deliverable - Presentation: 40 points
Deliverable - Implementation of fixes: 40 points
Individual Contribution report: 40 points

Total: 400 points

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Sticky Note
C-1, C-3

Your Name: __________________________

Team #: __________________________

Criteria Levels of Achievement

Good Moderate Poor

Addressed the question: Who (company or individual)

developed the tool? What is the cost to the tool user? How do

you acquire it?

4 2 0

Addressed the question: What testing purpose does the tool

serve? (i.e., what problem does it attempt to solve? How does

it improve productivity?)

4 2 0

Addressed the question: What programming language(s)

does the tool support, if any?
4 2 0

Addressed the question: In what phase of software testing is

the tool useful?
4 2 0

Addressed the question: What do you need to do in order to

use the tool? i.e., How do you install it? How do you

configure it? How do you use it?

8 4 0

Addressed the question: What are the strengths and

limitations of the tool?
4 2 0

Collaboration: Did everyone contribute to the presentation?

Did everyone seem well versed in the material?
4 2 0

Organization: Was the presentation well organized and easy

to follow?
4 2 1

Presentation: Did presenters speak clearly, engage audience,

and seem well prepared?
4 2 1

Total: ___________(out of 40 points)

Name: __________________________

Team #: __________________________

Criteria Levels of Achievement

Good Moderate Poor

Formatting 4 2 0

Organization 4 2 0

Grammar 4 2 0

Addressed the question: Who (company or individual)

developed the tool? What is the cost to the tool user? How do

you acquire it?

4 2 1

Addressed the question: What testing purpose does the tool

serve? (i.e., what problem does it attempt to solve? How does

it improve productivity?)

4 2 1

Addressed the question: What programming language(s)

does the tool support, if any?
4 2 0

Addressed the question: In what phase of software testing is

the tool useful?
4 2 0

Addressed the question: What do you need to do in order to

use the tool? i.e., How do you install it? How do you

configure it? How do you use it?

8 4 1

Addressed the question: What are the strengths and

limitations of the tool?
4 2 1

Total: ___________(out of 40 points)

Software Test Plan

What Must be Included?

Introduction

Test Spec Test Plan

Test Procedure

Unit Test
Integration Test
System Test
Acceptance Test

Goal
Scope

Test Plan – Major Items

1.0 Introduction
 This section provides an overview of the entire test plan

document. This document describes both the test plan and test
procedures.

1.1 Goals and objectives

 Overall goals and objectives of the test process are described.

1.2 Statement of scope

 A description of the scope of software testing. Functionality/
features/behavior to be tested is described. In addition any functionality/
features/behavior that is not to be tested is also noted.

Test Plan – Major Items
1.3 Major Constraints

 Any business, product line, or technical constraints that will impact
the manner in which the software is to be tested are noted here.

2.0 Test Plan

 This section describes the overall testing strategy and project
management issues that are required to properly execute effective tests.

2.1 Software to be tested

 The software to be tested are identified by name. Exclusions are
noted explicitly.

2.2 Testing Strategy

 The overall strategy for software testing is described.

Test Plan – Major Items
2.2.1 Unit Testing

 The strategy for unit testing is described. This includes an indication of the
components that will undergo unit tests or the criteria to be used to select components
for unit test. Test cases are NOT included here.

2.2.2 Integration Testing

 The integration testing strategy is specified. This section includes a
discussion of the order of integration by software function. Test cases are not included
here.

2.2.3 System Testing

 The system testing strategy is specified.

2.2.4 Acceptance Testing

 The validation testing strategy is specified. This section includes a discussion
of the order of validation by software function. Test cases are NOT included here.

Test Plan – Major Items
3.0 Test Procedure

 This section describes the detailed test procedure including test tactics and
test cases for the software.

3.1 Software to be tested

 The software to be tested are identified by name. Exclusions are noted
explicitly.

3.2 Testing Procedure

 The overall procedure for testing is described.

3.2.1 Unit Test cases

 The procedure for unit testing is described for each software component (that
will be unit tested). This section is repeated for all components (i).

3.2.1.1 Stubs/Drivers for component i

Test Plan – Major Items
3.2.2 Integration Testing (The integration testing procedure is specified)
3.2.2.1 Testing Procedure for integration
3.2.2.2 Stubs/Drivers required
3.2.2.3 Test cases and their purpose
3.2.2.4 Expected results

3.2.3 System Testing (The system testing procedure is specified)
3.2.3.1 Testing Procedure
3.2.3.2 Test cases and their purpose
3.2.3.3 Expected results

3.2.4 Acceptance Testing (The acceptance testing procedure is specified)
3.2.4.1 Testing Procedure
3.2.4.2 Test cases and their purpose
3.2.4.3 Expected results

Lab 3

Personal Software Process - PSP2

(Process Measurement, Software Quality & Planning)

Due Date: January 31, 2013

Submission: via Blackboard or hard-copy

Program

requirements

JOLLY JUMPERS

A sequence of n integers (n > 0) is called a jolly jumper if the absolute values

of the differences between successive elements take on all possible values 1

through n - 1. For instance,

1 4 2 3

is a jolly jumper, because the absolute differences are 3, 2, and 1, respectively.

The definition implies that any sequence of a single integer is a jolly jumper.

Write a program to determine whether each of a number of sequences is a jolly

jumper.

Input

Each line of input contains an integer n (where n < 500) followed by n integers

representing the sequence.

Output

For each line of input generate a line of output saying “Jolly” or “Not

jolly”.

Sample Input

4 1 4 2 3

5 1 4 2 -1 6

Sample Output

Jolly

Not jolly

skbansa2
Highlight
C-1, C-3

Assignment instructions:

Assignment

instructions

Before starting program 3, review the top-level PSP2 process script below to

ensure that you understand the “big picture” before you begin. Also, ensure that

you have all of the required inputs before you begin the planning phase.

PSP2 Process Script
Purpose To guide the development of module-level programs

Entry Criteria - Problem description
- Blank PSP2 Project Plan Summary form

- Blank Size Estimating worksheet and PSP Design Form

- Task Planning and Schedule planning templates

- Blank Time and Defect Recording logs
- Defect Type and size counting standards
- Stopwatch (optional)

Step Activities Description

1 Planning - Follow the attached planning script.

2 Development - Follow the attached development script.

3 Postmortem - Follow the attached postmortem script.

Exit Criteria - A thoroughly tested program
- Completed Project Plan Summary form with estimated and actual data
- Completed Size Estimating Worksheet & Design form
- Completed Task planning and schedule planning templates
- Completed Time and Defect Recording logs

Planning

phase Conduct project planning following the PSP2 planning script.

PSP2 Planning Script

Purpose To guide the PSP planning process

Entry Criteria - Problem description
- Blank PSP2 Project Plan Summary form
- Blank Size Estimating worksheet
- Task Planning & Schedule Planning templates

- Blank Time and Defect Recording logs

Step Activities Description

1 Form Setup - Complete form headers.
- Enter start time for PLAN phase in Time Recording Log.
- Enter your available hours on the Schedule Planning template

2 Program
Requirements

- Produce or obtain a requirements statement for the program.
- Ensure that the requirements statement is clear and unambiguous.
- Resolve any questions.

3 Size Estimate - Produce a program conceptual design.
- Use the informal estimation procedure to estimate the size of this

program.
- Complete the size estimating worksheet.

4 Defect Estimate - Use data from your most recent previous program to estimate the number
of defects for this program.

- Follow directions for Summary form and complete the estimate column
for “Defects injected” and “Defects removed” part of the summary form.

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

5 Resource
Estimate

- Follow the directions for completing the planning portion of the Project
Summary form.

- Enter the stop time for the PLAN phase in the Time Log.

Exit Criteria - Documented requirements statement.
- Program conceptual design (design form).
- Completed Size Estimating Worksheet
- Project Summary form contains estimated program size, defect, and

development time data.
- Time recording log contains entry for PLAN phase.
- Defect Recording log header completed.
- Schedule planning template with planning columns filled.

 Verify that you have met all of the exit criteria for the planning phase, and then

proceed to the development phase.

Development

phase

Conduct development of the project following the PSP2 development script.

PSP2 Development Script

Purpose To guide the development of small programs

Entry Criteria - Same as exit criteria from Planning Script.
- PSP Design Form.

Step Activities Description

1 Design - Record start time in the Time Recording Log.
- Review the requirements and produce a design to meet them.
- Record any design work you do in the PSP Design form.
- Record in the Defect Recording log any requirements defects found.
- Record time in the Time Recording log.

2 Design Review - Review your design (use the Design Review checklist provided).
- Record time in the Time Recording log under Design phase.

3 Code - Record start time in the Time Recording Log.
- Implement the design. Write the entire source code for the solution.
- Record in the Defect Recording log any requirements or design defects

found.
- Record time in the Time Recording log.

4 Code Review - Follow the code review script provided on the next page.

5 Compile - Record start time in the Time Recording Log.
- Compile the program until error-free.
- Fix all defects found.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.

6 Test - Record start time in the Time Recording Log.
- Test until all tests run without error.
- Fix all defects found.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.
- Based on the recorded times, compute earned values and record them in

actual columns of task and schedule planning templates.

Exit Criteria - A thoroughly tested program.
- Completed PSP Design Form.
- Time Log entries for Plan through Test Phases.
- Completed Defect Recording log.
- Task and Schedule Planning templates

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

 Verify that you have met all of the exit criteria for the development phase, and then

proceed to the postmortem phase.

Continued on next page

PSP2 Code Review Script

Purpose To guide you in reviewing programs

Entry Criteria - A completed and reviewed program design
- Source program listing
- Code Review checklist
- Defect Type standard
- Time and Defect Recording logs

Step Activities Description

1 Review - Record start time in Time Recording Log
- Follow the Code Review checklist.
- Review the entire program for each checklist category; do not try to

review for more than one category at a time!
- Check off each item as it is completed.
- For multiple modules or programs, complete a separate checklist for

each.

2 Correct - Correct all defects.
- If the correction cannot be completed, abort the review and return to the

prior process phase.
- To facilitate defect analysis, record all of the data specified in the Defect

Tally instructions for every defect.

3 Check - Check each defect fix for correctness.
- Re-review all design changes.
- Record any fixed defects as new defects.
- Record stop time in Time Recording Log.

Exit Criteria - A fully reviewed source program
- One or more Code Review checklists for every program reviewed
- All identified defects fixed
- Completed Time and Defect Recording log

 Verify that you have met all of the exit criteria for the code review phase, and then

continue the remaining steps in the development phase.

Postmortem

phase Conduct the postmortem following the PSP2 postmortem script.

PSP2 Postmortem Script

Purpose

To guide the PSP postmortem process

Entry Criteria - Same as exit criteria from Development Script.

Step Activities Description

1 Defect Recording - Review the Project Plan Summary to verify that all of the defects found in
each phase were recorded.

- Using your best recollection, record any omitted defects.

2 Defect Data
Consistency

- Record start time for Postmortem in the Time Recording Log.
- Check that the data on every defect in the Defect Recording log are

accurate and complete.
- Verify that the numbers of defects injected and removed per phase are

skbansa2
Highlight

skbansa2
Highlight

skbansa2
Highlight

reasonable and correct.
- Using your best recollection, correct any missing or incorrect defect data.

3 Defect
Summarizing

- Summarize defect tally data on the Project Summary Form.

4 Size - Count the size of the completed program (can use LOC counter programs
available online). Don’t count comments.

- Enter this data in the Project Summary form.

5 Time - Review the completed Time Recording log for errors or omissions.
- Using your best recollection, correct any missing or incomplete time data.
- Compute the delta time for all completed log entries.
- Guess how long it will take to complete the Project Summary calculations

and enter you guessed stop time in the Time Log. Compute the delta time.
- Summarize time data on Project Summary form.
- Finish remaining calculations on Project summary form.

Exit Criteria - A thoroughly tested program

- Completed Project Plan Summary form

- Completed Time and Defect Recording logs

 Verify that you have met all of the exit criteria for the PSP2 postmortem phase, and then
submit your assignment.

Submitting your

assignment

When you’ve completed the postmortem phase, submit your assignment via

Blackboard or hard-copy to your instructor. The submission package should

have the following:

• PSP2 Project Plan Summary form

 • PSP Estimation worksheet

 • PSP Design form with reviews/comments from 1 of your classmates

• Time Recording log

• Defect Recording log

• Design Review and Code Review checklists (marked)

• Task Planning and Schedule Planning templates (with earned value columns

completed)

• Source program listing

• Test results for 4 test cases

skbansa2
Highlight

skbansa2
Highlight

PSP2 Project Summary

Programmer Program ID
Program Date

Time in Phase (min.) Est. Actual To Date To Date %

 Planning
 Design
 Code
 Code Review
 Compile
 Test
 Postmortem
 Total

Defects Injected Est. Actual To Date To Date %

 Planning
 Design
 Code
 Code Review
 Compile
 Test
 Total Development
 After Development

Defects Removed Est. Actual To Date To Date %

 Design
 Code
 Code Review
 Compile
 Test
 Total Development
 After Development

Summary Est. Actual To Date
 Program Size (LOC)
 LOC/Hour
 Defects/KLOC
 Yield
 A/F ratio

© Copyright 2010 by John Dalbey

PSP Estimating Worksheet

1. Conceptual Design
(Sketch your design here)

2. Module Estimates
Module Description Estimated Size

TOTAL ESTIMATED SIZE: ______________

© 2010 by John Dalbey

PSP Design Form

Programmer Program ID

Use this form to record whatever you do during the design phase of development. Include notes,
diagrams, formal design notation, or anything else you consider to be part of designing a solution that
happens BEFORE you write program source code. Attach additional pages if necessary.

PSP2	
 Design	
 Review	
 Checklist	

Student	
 	
 Date	
 	

Program	
 	
 Program	
 #	
 	

Instructor	
 	
 Language	
 	

	

Purpose	
 To	
 guide	
 you	
 in	
 conducting	
 an	
 effective	
 design	
 review	

General	
 -­‐ Review	
 the	
 entire	
 design	
 for	
 each	
 checklist	
 category;	
 do	
 not	
 attempt	
 to	
 review	

for	
 more	
 than	
 one	
 category	
 at	
 a	
 time!	

-­‐ As	
 you	
 complete	
 each	
 review	
 step,	
 check	
 off	
 that	
 item	
 in	
 the	
 box	
 at	
 the	
 right.	

-­‐ Complete	
 the	
 checklist	
 for	
 one	
 program	
 or	
 program	
 unit	
 before	
 reviewing	
 the	

next.	
 	

	

Complete	
 Verify	
 that	
 the	
 design	
 covers	
 all	
 of	
 the	
 applicable	
 requirements.	

-­‐ All	
 specified	
 outputs	
 are	
 produced.	

-­‐ All	
 needed	
 inputs	
 are	
 furnished.	

-­‐ All	
 required	
 includes	
 are	
 stated.	

	
 	
 	
 	

External	
 Limits	
 Where	
 the	
 design	
 assumes	
 or	
 relies	
 upon	
 external	
 limits,	
 determine	
 if	

behavior	
 is	
 correct	
 at	
 nominal	
 values,	
 at	
 limits,	
 and	
 beyond	
 limits.	

	
 	
 	
 	

Logic	
 -­‐ Verify	
 that	
 program	
 sequencing	
 is	
 proper.	

	
 	
 	
 	
 	
 	
 	
 Stacks,	
 lists,	
 and	
 so	
 on	
 are	
 in	
 the	
 proper	
 order.	

	
 	
 	
 	
 	
 	
 	
 Recursion	
 unwinds	
 properly.	

-­‐ Verify	
 that	
 all	
 loops	
 are	
 properly	
 initiated,	
 incremented,	
 and	

terminated.	

-­‐ Examine	
 each	
 conditional	
 statement	
 and	
 verify	
 all	
 cases.	

	
 	
 	
 	

Internal	
 Limits	
 Where	
 the	
 design	
 assumes	
 or	
 relies	
 upon	
 internal	
 limits,	
 determine	
 if	

behavior	
 is	
 correct	
 at	
 nominal	
 values,	
 at	
 limits,	
 and	
 beyond	
 limits.	

	
 	
 	
 	

Special	
 Cases	
 -­‐ Check	
 all	
 special	
 cases.	

-­‐ Ensure	
 proper	
 operation	
 with	
 empty,	
 full,	
 minimum,	
 maximum,	

negative,	
 and	
 error	
 values	
 for	
 all	
 variables.	

-­‐ Protect	
 against	
 out-­‐of-­‐limits,	
 overflow,	
 and	
 underflow	
 conditions.	

-­‐ Ensure	
 “impossible”	
 conditions	
 are	
 absolutely	
 impossible.	

-­‐ Handle	
 all	
 possible	
 incorrect	
 or	
 error	
 conditions.	

	
 	
 	
 	

Functional	
 Use	
 -­‐ Verify	
 that	
 all	
 functions,	
 procedures,	
 or	
 methods	
 are	
 fully	
 understood	

and	
 properly	
 used.	

-­‐ Verify	
 that	
 all	
 externally	
 referenced	
 abstractions	
 are	
 precisely	
 defined.	

	
 	
 	
 	

System	

Considerations	

-­‐ Verify	
 that	
 the	
 program	
 does	
 not	
 cause	
 system	
 limits	
 to	
 be	
 exceeded.	

-­‐ Verify	
 that	
 all	
 security-­‐sensitive	
 data	
 are	
 from	
 trusted	
 sources.	

-­‐ Verify	
 that	
 all	
 safety	
 conditions	
 conform	
 to	
 the	
 safety	
 specifications.	

	
 	
 	
 	

Names	
 Verify	
 that	

-­‐ all	
 special	
 names	
 are	
 clear,	
 defined,	
 and	
 authenticated	

-­‐ the	
 scopes	
 of	
 all	
 variables	
 and	
 parameters	
 are	
 self-­‐evident	
 or	
 defined	

-­‐ all	
 named	
 items	
 are	
 used	
 within	
 their	
 declared	
 scopes	

	
 	
 	
 	

Standards	
 Ensure	
 that	
 the	
 design	
 conforms	
 to	
 all	
 applicable	
 design	
 standards.	
 	
 	
 	
 	

PSP Time Recording Log

Student Date
Program Program #
Instructor Language

Project Phase
Start Date
and Time

Int.
Time

Stop Date
and Time

Delta
Time Comments

	

	

PSP Defect Recording Log

Student Date
Program Program #
Instructor Language

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

Project Date Number Type Inject Remove Fix Time Fix Ref.

Description:

	

Defect Types
10 Documentation 60 Checking
20 Syntax 70 Data
30 Build, Package 80 Function
40 Assignment 90 System
50 Interface 100 Environment

PSP Defect Recording Log Instructions

Purpose - Use this form to hold data on the defects that you find and correct.
- These data are used to complete the Project Plan Summary form.

General - Record each defect separately and completely.
- If you need additional space, use another copy of the form.

Header - Enter your name and the date.
- Enter the program name and number.
- Enter the instructor’s name and the programming language you are using.

Project - Give each program a different name or number.
- For example, record test program defects against the test program.

Date Enter the date on which you found the defect.
Number - Enter the defect number.

- For each program or module, use a sequential number starting with 1 (or
001, etc.).

Type - Enter the defect type from the defect type list summarized in the top left
corner of the form.

- Use your best judgment in selecting which type applies.
Inject - Enter the phase when this defect was injected.

- Use your best judgment.
Remove Enter the phase during which you fixed the defect. (This will generally be

the phase when you found the defect.)
Fix Time - Enter the time that you took to find and fix the defect.

- This time can be determined by stopwatch or by judgment.
Fix Ref. - If you or someone else injected this defect while fixing another defect,

record the number of the improperly fixed defect.
- If you cannot identify the defect number, enter an X.

Description Write a succinct description of the defect that is clear enough to later
remind you about the error and help you to remember why you made it.

	

	

PSP Defect Type Standard

Type
Number Type Name Description

10 Documentation Comments, messages
20 Syntax Spelling, punctuation, typos, instruction formats
30 Build, Package Change management, library, version control
40 Assignment Declaration, duplicate names, scope, limits
50 Interface Procedure calls and references, I/O, user formats
60 Checking Error messages, inadequate checks
70 Data Structure, content
80 Function Logic, pointers, loops, recursion, computation, function defects
90 System Configuration, timing, memory

100 Environment Design, compile, test, or other support system problems
	

Task Planning Template

Student Date
Project Instructor

Task Plan Actual
Number Name Hours Planned

Value
Cumulative

Hours
Cumulative

Planned
Value

Date/
Week

Date/
Week

Earned
Value

Cumulative
Earned
Value

Totals

Task Planning Template Instructions

Purpose • To estimate the development time for each project task

• To compute the planned value for each project task
• To estimate the planned completion date for each task
• To provide a basis for tracking schedule progress even when the tasks are not

completed in the planned order
General • Expand this template or use multiple pages as needed.

• Include every significant task.
• Use task names and numbers that support the activity and are consistent with

the project work breakdown structure.
Header Enter the following:

• Your name
• Today’s date
• The project number
• The instructor’s name

Task • Enter a task number and name. List the tasks in the order in which you expect
to complete them.
• Select tasks that have explicit completion criteria, for example, planning

completed, program compiled and all defects corrected, testing completed and
all defects corrected, and so on.

Plan − Hours Enter the planned hours for each task.
Plan − Planned Value • Total the planned hours for all the tasks.

• For each task, calculate the percent its planned hours are of total hours.
• Enter this percentage as the planned value for that task.
• The total planned value should equal 100.

Plan −
Cumulative Hours

Enter the cumulative sum of the plan hours down through each task.

Plan −
Cumulative Value

• Sum the planned values down through each task.
• Before proceeding, complete the Schedule Planning Template down through

Plan−Cumulative Hours.
• Then complete the Schedule Planning and Task Planning templates together.

Plan Date −
Monday

• For each cumulative hours entry, find the plan cumulative hours entry on the
Schedule Planning Template that equals or just exceeds it.

• Enter the date from that row (of the Schedule Planning Template) as the plan
date on the Task Planning Template.

• If several weeks on the Schedule Planning Template have the same
cumulative value, enter the earliest date.

• Unless you made daily plans, pick the plan date as the Monday of the week
during which completion for that task is planned.

Actual Date As each task is completed, enter the completion date.
Earned Value For each completed task, enter the planned value.
Cumulative
Earned Value

As each task is completed, total all the earned value entries and enter that total
beside the latest task that was completed.

	

Schedule Planning Template

Student Date
Project Instructor

 Plan Actual
Date/
Week

Direct
Hours

Cumulative
Hours

Cumulative
Planned
Value

Direct
Hours

Cumulative
Hours

Cumulative
Earned
Value

Adjusted
Earned
Value

Schedule Planning Template Instructions

Purpose • To record the estimated and actual hours expended by calendar period

• To relate the task planned value to the calendar schedule
• To calculate adjusted planned and earned values when tasks change

General • Expand this template or use multiple pages as needed.
• Complete it in conjunction with the Task Planning Template.

Header Enter the following:
• Your name
• Today’s date
• The project number
• The instructor’s name

Week Number • From the project start, enter a week number, typically starting with 1.
• For very small projects, it may be more convenient to use days instead

of weeks.
Date (Monday) • Enter the calendar date for each week.

• Pick a standard day in the week, for example, Monday.
Plan−Direct
Hours

• Enter the planned number of direct project hours you expect to spend
each week.

• Consider non-work time such as vacations, holidays, and so on.
• Consider other committed activities such as classes, meetings, and other

projects.
Plan−
Cumulative Hours

Enter the cumulative planned hours through each week.

Plan−
Cumulative
Planned Value

For each week, do the following:
• Take the plan cumulative hours from the Schedule Planning Template.
• On the Task Planning Template, find the task with nearest equal or

lower plan cumulative hours and note its plan cumulative value.
• Enter this cumulative value in the Schedule Planning Template for that

week.
• If the cumulative value for the prior week still applies, enter it again.

Actual • During development, enter the actual direct hours, cumulative hours,
and cumulative earned value for each week.

• Determine status against plan by comparing the cumulative planned
value and the actual cumulative earned value.

Adjusted
Earned Value

Proportionately adjust the earned value up or down as tasks are added or
deleted. The adjusted earned value compensates for these changes
without requiring a complete new plan.

	

Contents

Part 1 Introduction to Software Engineering

Chapter 1: Introduction
1. Professional software development
1.2 Software engineering ethics
1.3 Case studies

Chapter 2: Software processes
 2.1 Software process models
 2.2 Process activities
 2.3 Coping with change
 2.4 The Rational Unified Process

Chapter 3: Agile software development
3.1 Agile methods
3.2 Plan-driven and agile development
3.3 Extreme programming
3.4 Agile project management
3.5 Scaling agile methods

Chapter 4: Requirements engineering
4.1 Functional and non-functional requirements
4.2 The software requirements document
4.3 Requirements specification
4.4 Requirements engineering processes
4.5 Requirements elicitation and analysis
4.6 Requirements validation
4.7 Requirements management

Chapter 5: System modeling
5.1 Context models
5.2 Interaction models
5.3 Structural models
5.4 Behavioral models
5.5 Model-driven engineering

Chapter 6: Architectural design
6.1 Architectural design decisions
6.2 Architectural views

6.3 Architectural patterns
6.4 Application architectures

Chapter 7: Design and Implementation
7.1 Object-oriented design using the UML
7.2 Design patterns
7.3 Implementation issues
7.4 Open source development

Chapter 8: Software testing
8.1 Development testing
8.2 Test-driven development
8.3 Release testing
8.4 User testing

Chapter 9: Software Evolution
9.1 Evolution processes
9.2 Program evolution dynamics
9.3 Software maintenance
9.4 Legacy system management

Part 2 Dependability and Security

Chapter 10: Socio-technical Systems
10.1 Complex systems
10.2 Systems engineering
10.3 System procurement
10.4 System development
10.5 System operation

Chapter 11: Dependability and Security
11.1 Dependability properties
11.2 Availability and reliability
11.3 Safety
11.4 Security

Chapter 12: Dependability and Security Specification
12.1 Risk-driven requirements specification
12.2 Safety specification
12.3 Reliability specification
12.4 Security specification

12.5 Formal specification

Chapter 13: Dependability Engineering
13.1 Redundancy and diversity
13.2 Dependable processes
13.3 Dependable systems architectures
13.4 Dependable programming

Chapter 14: Security Engineering
14.1 Security risk management
14.2 Design for security
14.3 System survivability

Chapter 15: Dependability and Security Assurance
15.1 Static analysis
15.2 Reliability testing
15.3 Security testing
15.4 Process assurance
15.5 Safety and dependability cases

Part 3 Advanced Software Engineering

Chapter 16: Software Reuse
16.1 The reuse landscape
16.2 Application frameworks
16.3 Software product lines
16.4 COTS product reuse

Chapter 17: Component-based Software Engineering
17.1 Components and component models
17.2 CBSE processes
17.3 Component composition

Chapter 18: Distributed Software Engineering
18.1 Distributed systems issues
18.2 Client–server computing
18.3 Architectural patterns for distributed systems
18.4 Software as a service

Chapter 19: Service-oriented Architecture
19.1 Services as reusable components
19.2 Service engineering
19.3 Software development with services

Chapter 20: Embedded Systems
20.1 Embedded systems design
20.2 Architectural patterns
20.3 Timing analysis
20.4 Real-time operating systems

Chapter 21: Aspect-oriented software engineering
21.1 The separation of concerns
21.2 Aspects, join points and pointcuts
21.3 Software engineering with aspects

Part 4 Software management

Chapter 22: Project management
22.1 Risk management
22.2 Managing people
22.3 Teamwork

Chapter 23: Project planning
23.1 Software pricing
23.2 Plan-driven development
23.3 Project scheduling
23.4 Agile planning
23.5 Estimation techniques

Chapter 24: Quality management
24.1 Software quality
24.2 Software standards
24.3 Reviews and inspections
24.4 Software measurement and metrics

Chapter 25: Configuration management
25.1 Change management
25.2 Version management
25.3 System building
25.4 Release management

Chapter 26: Process improvement
26.1 The process improvement process
26.2 Process measurement
26.3 Process analysis
26.4 Process change
26.5 The CMMI process improvement framework

Glossary

	LabAssignment(PersonalSoftwareProcess).pdf
	PSP2Summary.pdf
	To Date %
	 Planning
	 Design
	 Code
	 Code Review
	 Compile
	 Test
	 Postmortem
	 Total
	To Date %

	 Planning
	 Design
	 Code
	To Date %

	 Design
	 Code

