Course information:
Copy and paste current course information from Class Search/Course Catalog.

Academic Unit	CLAS	Department	School of Life Sciences
Subject | BIO | Number | 410 |
Title | Techniques in Conservation Biology and Ecology |
Units | 3 | | |

Is this a cross-listed course?
If yes, please identify course(s)
No

Is this a shared course?
If so, list all academic units offering this course
No

Course description:

Requested designation: Literacy and Critical Inquiry–L
Note- a separate proposal is required for each designation requested

Eligibility:
Permanent numbered courses must have completed the university’s review and approval process.
For the rules governing approval of omnibus courses, contact the General Studies Program Office at (480) 965–0739.

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
- Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/statistics/quantitative applications core courses (CS)
- Humanities, Fine Arts and Design core courses (HU)
- Social and Behavioral Sciences core courses (SB)
- Natural Sciences core courses (SQ/SG)
- Global Awareness courses (G)
- Historical Awareness courses (H)
- Cultural Diversity in the United States courses (C)

A complete proposal should include:
☐ Signed General Studies Program Course Proposal Cover Form
☒ Criteria Checklist for the area
☒ Course Syllabus
☐ Table of Contents from the textbook and list of required readings/books

Contact information:
Name: Juliet Stromberg and Miles Orchinik
Phone: 480 965 0864
Mail code: 4501
E-mail: jstrom@asu.edu/m.orchinik@asu.edu

Department Chair/Director approval: (Required)
Chair/Director name (Typed): ___________________________ Date: ___________________________
Chair/Director (Signature): ____________________________
BIO 410 Techniques in Conservation Biology and Ecology
Lecture, field, and laboratory experience in techniques used in conservation biology and ecology. Course is modular, with each module instructed by a discipline-specific expert (e.g., plant ecologist, mammal conservationist, soil ecologist).
Allow multiple enrollments: No Primary course component: Lecture
Repeatable for credit: No Grading method: Student Option
Offered by: College of Liberal Arts and Sciences -- School of Life Sciences
Pre-requisites: ENG 101 (or 105 or 107); BIO 320; BIO 322 or BIO 323 with C or better
Rationale and Objectives

Literacy is here defined broadly as communicative competence in written and oral discourse. Critical inquiry involves the gathering, interpretation, and evaluation of evidence. Any field of university study may require unique critical skills which have little to do with language in the usual sense (words), but the analysis of spoken and written evidence pervades university study and everyday life. Thus, the General Studies requirements assume that all undergraduates should develop the ability to reason critically and communicate using the medium of language.

The requirement in Literacy and Critical Inquiry presumes, first, that training in literacy and critical inquiry must be sustained beyond traditional First Year English in order to create a habitual skill in every student; and, second, that the skills become more expert, as well as more secure, as the student learns challenging subject matter. Thus, the Literacy and Critical Inquiry requirement stipulates two courses beyond First Year English.

Most lower-level [L] courses are devoted primarily to the further development of critical skills in reading, writing, listening, speaking, or analysis of discourse. Upper-division [L] courses generally are courses in a particular discipline into which writing and critical thinking have been fully integrated as means of learning the content and, in most cases, demonstrating that it has been learned.

Students must complete six credit hours from courses designated as [L], at least three credit hours of which must be chosen from approved upper-division courses, preferably in their major. Students must have completed ENG 101, 107, or 105 to take an [L] course.

Notes:

1. ENG 101, 107 or ENG 105 must be prerequisites
2. Honors theses, XXX 493 meet [L] requirements
3. The list of criteria that must be satisfied for designation as a Literacy and Critical Inquiry [L] course is presented on the following page. This list will help you determine whether the current version of your course meets all of these requirements. If you decide to apply, please attach a current syllabus, handouts, or other documentation that will provide sufficient information for the General Studies Council to make an informed decision regarding the status of your proposal.
Proposer: Please complete the following section and attach appropriate documentation.

ASU - [L] CRITERIA

TO QUALIFY FOR [L] DESIGNATION, THE COURSE DESIGN MUST PLACE A MAJOR EMPHASIS ON COMPLETING CRITICAL DISCOURSE--AS EVIDENCED BY THE FOLLOWING CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CRITERION 1: At least 50 percent of the grade in the course should depend upon writing, including prepared essays, speeches, or in-class essay examinations. Group projects are acceptable only if each student gathers, interprets, and evaluates evidence, and prepares a summary report</td>
</tr>
</tbody>
</table>

1. Please describe the assignments that are considered in the computation of course grades--and indicate the proportion of the final grade that is determined by each assignment.

2. **Also:**

 Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading process--and label this information "C-1".

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CRITERION 2: The composition tasks involve the gathering, interpretation, and evaluation of evidence</td>
</tr>
</tbody>
</table>

1. Please describe the way(s) in which this criterion is addressed in the course design

2. **Also:**

 Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading process--and label this information "C-2".

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CRITERION 3: The syllabus should include a minimum of two substantial writing or speaking tasks, other than or in addition to in-class essay exams</td>
</tr>
</tbody>
</table>

1. Please provide relatively detailed descriptions of two or more substantial writing or speaking tasks that are included in the course requirements
2. Also:

Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading process—and label this information "C-3".
1. Please describe the sequence of course assignments—and the nature of the feedback the current (or most recent) course instructor provides to help students do better on subsequent assignments.

2. Also:

Please circle, underline, or otherwise mark the information presented in the most recent course syllabus (or other material you have submitted) that verifies this description of the grading process—and label this information "C-4".
Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>92% of the course grade is based on writing assignments, including weekly writing assignments, three lab reports, and a written final exam. The weekly writing assignments include a mix of short answer questions and short essay responses.</td>
<td>Yellow highlighted section of syllabus</td>
</tr>
<tr>
<td>Criterion 2</td>
<td>The three lab reports require the students to examine and analyze data and read relevant literature to address research questions. Many of the questions in the weekly assignments also call for students to form opinions and reach conclusions after reviewing information.</td>
<td>Documents titled Lab report format, Sample Assignment 1, and Sample Assignment 2</td>
</tr>
<tr>
<td>Criterion 3</td>
<td>Criterion 3: Each of the three lab reports is a substantial writing requirement. Furthermore, for the final lab report, each student must deliver an accompanying oral presentation.</td>
<td>See document titled Independent Field Study Report</td>
</tr>
<tr>
<td>Criterion 4</td>
<td>Criterion 4: The first lab report is returned to the students two weeks prior to the due date of the second lab report. The lab report contains a high degree of written feedback. Students are encouraged to meet with the TA to go over the comments.</td>
<td>Green highlighted section of syllabus</td>
</tr>
</tbody>
</table>
Instructor: Dr. Julie Stromberg; Office in LSE 717; istrict@asu.edu; 480 965-0864; Office hours 3 pm to 5 pm Friday and by appointment (please use email to contact me)
Teaching Assistant: Lane Butler; Office in LSE 713; vallarta@asu.edu; Office hours 3 pm to 5 pm Thursday and by appointment (please use email)

Lecture: Friday 7:45-8:45am in LSA 175 unless otherwise indicated
Lab/Field: Friday 9:00am-2:45pm in LSA 175 unless otherwise indicated, + some weekends

Learning Objectives

- Become familiar with issues to consider when designing a research or monitoring plan
- Gain familiarity with techniques for field sampling a range of organisms, including plants, insects, birds, mammals, reptiles and amphibians
- Hone your ability to write clear and concise lab and research reports

Grading

Grading is based in a percentage of points earned, out of a possible 300 points. Points are allocated as follows:

- 11 written assignments, each worth 15 points (lowest score dropped) = 150 points
- 3 written lab reports, each worth 25 points = 75 points
- Class participation = 25 points
- Final examination = 50 possible points. C-1

Grading Scale: A: ≥90%; B: 81-90%; C: 71-80%; D: 61-70%; E: ≤60%

If you have questions on any of your assignment grades, please contact the TA no more than 2 weeks after your assignment has been returned to you.

Textbook and Materials

“Pdf” files and links to web sites posted in the class Blackboard site

Attendance/Participation

Preparation for class means reading the assigned readings and reviewing all information required for that week. Attendance means attending the lectures and labs. Participation means asking questions and engaging in hands-on activities,

Excused absences will be granted in the following cases: 1) Illness or accident, accompanied by a doctor’s note. 2) To accommodate religious observances/practices that are in accord with ACD 304-04, “Accommodation for Religious Practices”; 3) To avoid Conflicts with university sanctioned events/activities that are in accord with ACD 304-02, “Missed Classes Due to University-Sanctioned Activities”. Please inform one of the course instructors in advance if you
are aware of a conflict. Important note: Please turn in lab reports even if you have an excused absence.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>Location</th>
<th>Preparation</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 23</td>
<td>The Scientific Method in Field Biology</td>
<td>7:45 AM in LSA175</td>
<td>Text Chapters 1, 2, 12; Blackboard postings</td>
<td>Writing Assignment #1</td>
</tr>
<tr>
<td>August 30</td>
<td>Identification of Birds</td>
<td>7:00 AM at LSE stairway</td>
<td>Text Chapter 9; Blackboard postings</td>
<td>Writing Assignment #2</td>
</tr>
<tr>
<td>Sept. 8</td>
<td>Bird Banding Techniques</td>
<td>6 am at Hassayampa River Preserve</td>
<td>Text Chapter 9, Blackboard postings</td>
<td>Writing Assignment #3</td>
</tr>
<tr>
<td>Sept. 13</td>
<td>Censusing of Birds</td>
<td>7 AM at Rio Salado</td>
<td>Text Chapter 9; Blackboard postings</td>
<td>Writing Assignment #4</td>
</tr>
<tr>
<td>Sept. 21</td>
<td>Bat Mist Netting</td>
<td>TBA</td>
<td>Text Chapter 10; Blackboard postings</td>
<td>Writing Assignment #5</td>
</tr>
<tr>
<td>Sept. 28</td>
<td>Spring Ecosystem Assessment</td>
<td>9 AM at Seven Springs</td>
<td>Text Chapter 11; Blackboard postings</td>
<td>Writing Assignment #6</td>
</tr>
<tr>
<td>Oct. 4</td>
<td>Field Experiment: Birds and People</td>
<td>9:00 AM at LSE stairway</td>
<td>Blackboard postings</td>
<td>Lab Report #1</td>
</tr>
<tr>
<td>Oct. 11</td>
<td>No Class, Fall Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 18</td>
<td>Stream Water Quality & Macroinvertebrates</td>
<td>9 AM at Indian Bend Wash</td>
<td>Text Chapters 5 and 11; Blackboard postings</td>
<td>Writing Assignment #7</td>
</tr>
<tr>
<td>Oct. 25 & 26</td>
<td>Small Mammal Trapping</td>
<td>4 PM Sat and 6:30 PM Sun at Granite Mountain</td>
<td>Text Chapter 10; Blackboard postings</td>
<td>Writing Assignment #8</td>
</tr>
<tr>
<td>Nov. 1</td>
<td>Limnology Techniques</td>
<td>9 AM at Tempe Town Lake</td>
<td>Text Chapter 11; Blackboard postings</td>
<td>Writing Assignment #9</td>
</tr>
<tr>
<td>Nov. 8</td>
<td>Plant Conservation at a Botanical Garden</td>
<td>8:30 AM at Desert Botanical Garden</td>
<td>Blackboard postings</td>
<td>Writing Assignment #10</td>
</tr>
<tr>
<td>Nov. 15</td>
<td>Vegetation Sampling</td>
<td>9 AM at South Mountain Park</td>
<td>Text chapter 4, Blackboard postings</td>
<td>Lab Report #2 C-4</td>
</tr>
<tr>
<td>Nov. 22</td>
<td>Behind the Scenes Conservation</td>
<td>9 AM at Phoenix Zoo</td>
<td>Blackboard postings</td>
<td>Writing Assignment #11</td>
</tr>
<tr>
<td>Dec. 6</td>
<td>Individual Presentations</td>
<td>9 am in LSA 275</td>
<td></td>
<td>Lab report #3 (due Dec. 13)</td>
</tr>
</tbody>
</table>
Field Trips
Much of this course will be conducted outside. For lab field trips, wear appropriate field gear (e.g. hats for sun protection, closed-toed shoes for foot protection). Bring sufficient water to drink. See these relevant ASU Risk Management Web Pages:
- Hanta virus: http://www.cdc.gov/ncidod/diseases/hanta/hps/
- Field trip guidelines: http://www.asu.edu/studentaffairs/risk/travel.htm

Transportation
The field sites for labs vary in their distance from campus. For the off-campus field trips, we are requesting that you car pool to the sites.

E-mail and Internet
You must have an active ASU e-mail account and access to the internet. All instructor correspondence will be sent to your ASU e-mail account. This course uses Blackboard for the posting of readings, assignments, hand-outs in support of lab, submission of assignments, and posting of grades.

Submitting Assignments
Submit assignments via Blackboard. Each assignment will have a designated place to submit the assignment (a dropbox). Submit your assignments as Word documents or pdf documents. Please don’t type or paste your assignments directly into the dropbox.
Each assignment is due by 11:59 PM Thursday evening the week following the activity.
Each lab report is due by 11:59 PM Thursday evening two weeks after the lab activity.

Missed Assignments
Unless an instructor is notified before an assignment is due and you are provided an opportunity to submit your assignment late, points will be taken off for assignments turned in late (5%/day).

Academic Integrity
Academic dishonesty will not be tolerated. There will be severe sanctions for plagiarizing and for any other form of dishonesty such as cheating on reports or exams. That said: we encourage you to work and study together. Please see http://provost.asu.edu/academicintegrity.

Responsible Behavior
Each student is expected to participate fully in all lab/field activities; irresponsible behavior or failure to participate will result in zero points being awarded for that week’s activity. Should threatening or disruptive activities arise, actions will be taken consistent with the section of the Student Services Manual, SSM 104–02, “Handling Disruptive, Threatening, or Violent Individuals on Campus”

Subject to Change Notice
The information in this syllabus, other than grade and absence policies, is subject to change with reasonable advance notice. Please review the course Blackboard site regularly; any changes will be communicated during class and via the Blackboard announcement feature.
Week #5 Bat Mist Netting
Saturday September 21

Meet at 4:45 pm at Florence Junction (junction of Highway 60 & 79). Specifically, take Highway 60 east to Florence Junction then go north about ¼ mile, under the highway to the T-junction (see map below). Approximate UTMs are WGS84, 12S, 468678E, 3679966N. It is about 50 miles and 50 minutes from ASU to Florence Junction. We will then hike about one mile to the site. We will take the nets down at 9 pm, and depart the site by about 9:30 pm.

Bring water and snacks, and warm clothes. We will be netting over a stock tank; if you want to help set up the net bring waders. We will have two pairs available. Bring a headlamp if you have one; we will have extras available.

Activities: Bill Burger, a wildlife biologist with Arizona Game and Fish Department, will demonstrate bat mist netting techniques.

Learning objectives:
1. Learn the techniques that are used for capturing and identifying bats.
2. Become familiar with mist netting techniques.
3. Understand the basics about bats—their habitats, population trends.
4. Become aware of the various groups involved with bat conservation.

Readings:

Assignment #5: Please answer the following questions, based on your experiences today, your readings, and any necessary independent research:

1. (3 points). Have bat populations been declining or increasing in abundance in Arizona? What are the suspected causes of this change?
2. (5 points). In one or two well written paragraphs, explain how data from mist netting can be used to inform bat conservation. Provide specific examples from the assigned readings or other sources you wish to use.
3. (4 points) In one or two well written paragraphs, describe the techniques demonstrated in today’s lab.
4. (2 points). Provide the common and scientific names of two bat species that were captured in the mist nets during the field trip.
5. (1 point) What is a main goal of the North American Bat Conservation Partnership?
Conservation at the Phoenix Zoo
November 22

Combined lecture and lab period: Meet at 9 am at entrance to Phoenix Zoo, in the middle of the entrance bridge. Expected return time is noon.

Readings: http://phoenixzoo.org/conservation/
http://phoenixzoo.org/conservation/local-conservation/

Activities, Lecture, and/or Demonstrations: Stuart Wells, Director of Conservation, will discuss endangered species conservation activities taking place at the Phoenix Zoo. Note-taking will be helpful. Please ask questions during the tour!

Learning objectives:

1. Understand the importance of zoological parks to animal conservation.
2. Understand the collaborations needed to successfully implement conservation initiatives.
3. Understand the techniques used in captive breeding programs, and the challenges of ex-situ conservation techniques

Assignment 11: Answer the following questions, based on your experiences today, your readings, and any necessary independent research: C-2 documentation

1. (5 points) Highlight one of the conservation initiatives of the Phoenix Zoo in 1-2 well-written paragraphs. In your answer provide the conservation objective, how this problem is being addressed, and the success of the initiative to date.

2. (5 points) In 1-2 well-written paragraphs discuss some of the challenges associated with captive breeding and release programs. Do you think these are an effective use of limited “conservation dollars”?

3. (5 points).
 3a. Define ex-situ conservation.
 3b. The Phoenix zoo has conservation programs on several local endangered animal species. Approximately what percent of these species depend on aquatic or wetland habitats?
 3c. Does the year in which the Gila topminnow was listed as an endangered species under the Endangered Species Act predate or postdate your own birth?
 3d. Of the 36 fish species that historically occurred in Arizona, how many are threatened, endangered, or extinct?
 3e. What organisms are common vectors for sylvatic plague?

Looking for volunteer opportunities? Please visit the zoo volunteer page.
FORMAT FOR LAB REPORT

Title—The title should be a succinct sentence or a question (sometimes your research question will work well here).

Abstract—Write this LAST, after everything else is written, in order to concisely summarize your objectives, hypotheses, methods, results, and conclusions AFTER you’ve worked out what they are and have written them. This will be a short paragraph, not more than 300 words.

Introduction
- State the purpose of the study and enough background material to demonstrate the significance of the study.
- Write out your research question(s), and also write out your predictions for what you expect to find.
- Refer to two relevant published research articles from scholarly peer-reviewed science journals. What have other researchers learned regarding this topic? Why is your study needed?

Methods
- Summary of setting of study (date, location, season, etc.), equipment and materials used, experimental design and procedures used, and how you analyzed your data—for this lab, analysis does not need to be statistical.
- Provide enough information to allow other researchers to repeat your experiment.

Results
- Tables, numbered consecutively—this means your table has a title (Table 1)
- Figures, numbered consecutively, separate from tables
- Make sure you adequately explain your results table and figure in the TEXT of your results section: Refer to the table and figure within a narrative, describing the trends. Walk your reader through your results.
- Because you’re not conducting statistical analysis, you’re not allowed to say “significant difference”

Discussion
- Interpret your results; compare your results to your hypotheses.
- Write about possible errors in the design and implementation of the study;
- Consider alternate explanations for your results, and any alternate hypotheses that these explanations might provoke.
- Compare your results to the work of the scientists whose papers you cited in your introduction.

Conclusion
• One-paragraph summary highlighting the main findings of your research—these are the main points you want the reader to understand.
• If you wish, conclude with management recommendations.

Literature Cited
• Every article cited in the body of the paper should appear here, in alphabetical order by the last name of the first author listed in each paper, and following this format for consistency:

Note about Citations—Citation of sources should take place within the body of the paper, right after the information cited from that source. In science, it is important to know WHO said it and WHEN it was said, so put the author and year in parentheses (Parrish 2004).
Independent Field Research Report

Assignment: During the semester you will carry out an independent research project, summarize the project in a written lab report, and present the study to the class.

Research question: Your research question is up to you – it can be on any topic that relates to the content of this class. By October 4, email your instructor your potential research question, methods, and study area, for approval. Some questions students have asked in the past are “How does time of day influence detection of urban birds?” and “Are bird abundance and diversity in urban areas influenced both by human food sources and by crowd density?”

While we are on our weekly field trips, be thinking about your final project. Observe your surroundings and ask questions. What is a question you would like to know the answer to? Try and design your research based on the opportunities that present themselves. You can focus on birds, plants, herpetofauna, or any other organisms you feel prepared to study, subject to instructor approval. Let your TA know of any equipment you need to borrow (e.g., meter tape, dbh tape, binoculars).

Field methods: You will be conducting a field study. Some potential locations to address your research questions are the ASU campus (including the Arboretum), the Phoenix Rio Salado riparian area, and South Mountain Park.

Partner with a fellow student to help you collect data, as it is a good idea to have a partner with you in the field. Plan on spending several hours collecting your data. Record your data on datasheets that you have prepared before your field excursion.

Remember to take pictures of your study area and research subjects while you are in the field, to include in your presentation.

Data summary: Once you have collected your field data, enter it into an Excel spreadsheet. Include one data table and one figure in your report. You can generate the figure using Excel. You are encouraged (but not required) to conduct statistical analysis, such as using a Student’s t-test to compare two population means. Make sure you have adequate sample size to allow for the statistical analysis.

Written report: Follow the format detailed in the document “Format for Research Report” as posted on Blackboard. Your written report is due on December 13.

Presentation to class: In addition to submitting a written report, you will give a PowerPoint presentation to the class on December 6. Your presentation should have no more than 6 slides: (1) Title; (2) Research Question; (3) Study area (this can be a photo or a map); (4) Methods; (5) Results (table or figure here); (6) Conclusion.

C-3 documentation
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 Planning a research programme

William J. Sutherland

- Introduction: reverse planning 1
- What is the specific question? 2
- What results are necessary to answer the questions? 2
- What data are needed to complete these analyses? 4
- What protocol is required to obtain these data? 4
- Can the data be collected in the time available? 5
- Modifying the planning in response to time available 7
- Creating data sheets 8
- Start and encounter reality 10

2 Principles of sampling

Jeremy J. D. Greenwood and Robert A. Robinson

- Before one starts 13
 - Objectives 13
 - Know your organism 13
 - Censuses and samples 13
 - Know the reliability of your estimates 14
 - Performing the calculations 16
- Sampling – the basics 18
 - Defining sample units and the sampling frame 18
 - The need for replication 18
 - Ensuring that samples are representative 19
 - Deviations from random 21
 - The shape and size of sampling units 23
 - Estimation of means and total population sizes 25
- The layout of samples 33
 - Cluster sampling 33
vi Contents

Multi-level sampling 38
Stratified sampling 43
Adaptive sampling 51
Repeated counts at the same site 58
Comparing two or more study areas 62
Modelling spatial variation in numbers 65
Surveillance and monitoring 67
The difference between surveillance and monitoring 67
Monitoring and adaptive management 67
Sampling design for surveillance 71
Describing long-term changes 72
Alerts and indicators 77
Planning and managing a monitoring programme 83

References 85

3 General census methods 87

Jeremey J. D. Greenwood and Robert A. Robinson

Introduction 89
Complete counts (1): general 90
Not as easy as it seems 90
Sampling the habitat 90
Attempted complete enumeration 91
Complete counts (2): plotless sampling 91
Sample counts (1): mark–recapture methods 94
Fundamentals of mark–recapture 94
The two-sample method 100
Multiple recaptures in closed populations 102
Multiple recaptures in open populations 119
The robust model 128
What area does a trapping grid cover? 128
Sample counts (2): some other methods based on trapping 129
The removal method 129
The change-in-ratio method 130
Simultaneous marking and recapture: the method of Wileyto et al. 132
Continuous captures and recaptures: the Craig and du Feu method 132
Passive distance sampling 136
Sampling from the whole area 136
Sample counts (3): ‘mark–recapture’ without capture 136
Marking without capture 136
Individual recognition without capture 136
Contents

The double-observer method 137
The double-survey method 140
Subdivided point counts 140
Sample counts (4): N-mixture models 140
Sample counts (5): distance sampling 141
 General 141
 Line transects 145
 Point transects 148
 Passive distance sampling 148
Sample counts (6): interception methods 152
 Point quadrats 152
 Line intercepts (cover) 153
 Line intercepts (counts) 153
Sample counts (7): migrating animals 154
 Continuous migration 154
 Stop-over sites 155
Population indices 155
 The idea of an index 155
 Overcoming variation in the index ratio 158
Double sampling 168
Frequency of occurrence 168
 Basics 168
 Managing the methodology 174
 Sampling strategy and statistical analysis for frequency of occurrence 176
 Subdivision of samples 177
Appendix: software packages for population estimation 181
 Capture–recapture: closed populations 181
 Capture–recapture: open populations 182
 Ring-recovery models 182
 Multi-state models 183
 Observation-based methods 183
References 183

4 Plants 186
James M. Bullock 186
Introduction 186
Counts 188
Dafor 189
Quadrats 189
Point quadrats 194
Contents

Transects 196
Mapping terrestrial vegetation 197
Mapping aquatic vegetation 200
Seed traps 201
Sampling of seedbanks 204
Phytoplankton 207
Benthic algae 209
Marking and mapping individuals 210
References 212

5 Invertebrates 214
Malcolm Ausden and Martin Drake

Introduction 214
Direct searching and collecting 216
Trapping 216
Extraction from the substrate 216
Storing, killing and preserving invertebrates 219
Searching and direct observation (terrestrial and aerial) 220
Pitfall traps 222
Sweep netting 225
Vacuum sampling 226
Beating 228
Fogging 228
Malaise traps 229
Window or interception traps 231
Water traps 232
Light traps 234
Other aerial attractants and traps 236
Terrestrial emergence traps 237
Digging and taking soil cores 238
Litter samples and desiccation funnels 239
Searching and direct observation (aquatic) 240
Pond netting 241
Cylinder samplers 242
Aquatic bait traps 243
Aquatic emergence traps 243
Digging, taking benthic cores and using grabs 244
Kick sampling 245
References 247
Contents

6 Fish 250
Isabelle M. Côté and Martin R. Perrow

Introduction 250
Bankside counts 251
Underwater observations 253
Electric fishing 254
Seine netting 257
Trawling 260
Lift, throw and push netting 263
Hook and lining 265
Gill netting 266
Trapping 269
Hydroacoustics 271
Visual estimates of eggs 273
Volumetric estimates of eggs 273
Plankton nets for catching eggs 274
Emergence traps for eggs 275
References 275

7 Amphibians 278
Tim R. Halliday

Introduction 278
Recognising individuals 280
Detection probability 280
Drift netting 285
Scan searching 286
Netting 287
Trapping 288
Transect and patch sampling 289
Removal studies 290
Call surveys 290
Using multiple methods 291
Recording other data 293
References 293

8 Reptiles 297
Simon Blomberg and Richard Shine

Introduction 297
Hand capturing 297
Noosing 301
Contents

Trapping 302
Marking individuals 305
References 306

9 Birds 308
DAVID W. GIBBONS AND RICHARD D. GREGORY
Introduction 308
Listing methods 311
Timed species counts 313
Territory mapping 314
Transects 319
Line transects 320
Point counts or point transects 324
Correcting for differences in detection probabilities 326
Capture techniques 328
Catch per unit effort 328
Capture-mark-recapture 330
Counting nests in colonies 331
Counting roosts 335
Counting flocks 336
Counting migrants 337
Indirect methods of censusing 339
Dropping counts 339
Footprints and tracking strips 340
Response to playback 341
Vocal individuality 342
References 344

10 Mammals 351
CHARLES KRES
Introduction 351
Nesting or resting structures 354
Bat roosts and nurseries 354
Line transects 356
Aerial surveys 358
Individual recognition 359
Counting calls 360
Trapping 360
Counting dung 363
Feeding signs for herbivores 364
Contents

Counting footprints and runways 364
Hair tubes and hair catchers 365
Counting seal colonies 366
References 367

11 Environmental variables 370
Jacquelyn C. Jones, John D. Reynolds and Dave Raffaelli
Introduction 370
Wind and water flow 371
Wind 372
Water flow 372
Other kinds of water movement 374
Rainfall 374
Temperature 374
Humidity 375
pH 376
Duration of sunshine 377
Slope angles and height above shore 377
Light 378
Aquatic light 380
Water turbidity 380
Conductivity 381
Salinity 382
Preamble to water chemistry 383
Dissolved oxygen 385
Nitrogenous compounds 389
Phosphorus compounds 396
Water-testing kits 399
Soil and sediment characteristics 399
Redox potential 405
Oxygen in soils and sediments 405
References 406

12 The twenty commonest censusing sins 408
William J. Sutherland

Index 411