1.) DATE: 2/26/2014

2.) COMMUNITY COLLEGE: Pima Community College

3.) COURSE PROPOSED: Prefix: BIO Number: 105 Title: ENVIRONMENTAL BIOLOGY Credits: 4

 CROSS LISTED WITH: Prefix: Number: ; Prefix: Number: ; Prefix: Number: ;

 Prefix: Number: ; Prefix: Number: ; Prefix: Number:

4.) COMMUNITY COLLEGE INITIATOR: ASU Transfer Systems Development PHONE: 7-2424 FAX:

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable are not eligible for the General Studies Program.

MANDATORY REVIEW:

☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:
 Core Areas: Natural Sciences (SG) Awareness Areas: Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) DOCUMENTATION REQUIRED
 ☑ Course Description
 ☑ Course Syllabus
 ☑ Criteria Checklist for the area
 ☑ Table of Contents from the textbook required and/or list of required readings/books
 ☑ Description of how course meets criteria as stated in Item 6.

8.) THIS COURSE CURRENTLY TRANSFERS TO ASU AS:
 ☐ DEC prefix
 ☑ Elective

Current General Studies designation(s): NONE

Effective date: 2014 Fall Course Equivalency Guide

Is this a multi-section course? ☐ yes ☐ no

Is it governed by a common syllabus? ☐ yes ☐ no

Chair/Director: Chair/Director Signature:

AGSC Action: Date action taken: ☐ Approved ☐ Disapproved

Effective Date:
Rationale and Objectives

In a relatively short time in the history of civilized societies, humankind moved from what was essentially an agrarian population into an industrial age, which in recent years has been profoundly shaped by such scientific and technological advances as genetic engineering, the computer, and space exploration. Our history of irrepressible ingenuity makes a compelling case for a future that will be even more profoundly influenced by science and technology. It is imperative that we react expeditiously and effectively to the problems and the promise that these advances create. We must ensure that technological change is directed to the benefit of society and that it will promote human dignity and values. Success in achieving this goal will depend upon the insight and knowledge of political and public opinion leaders, and the scientific enlightenment of educated citizens. To a significant degree, the ability of these individuals to understand the nature of the issues and the alternative courses of action will be determined by the quality of science presented at the nation's institutions of higher learning.

The recommendation of at least one laboratory course that includes a substantial introduction to the fundamental behavior of matter and energy in physical or biological systems derives from a number of considerations. First, all physical and biological phenomena have at their roots the fundamental principles governing the behavior of matter and energy. These principles have been shown over a period of time to be a value in reliably predicting and rationalizing a broad range of phenomena. Unless the lines to these roots are established, our understanding of the broader range of the sciences, and other fields upon which these sciences impinge, will be impaired. Second, because these fundamental principles have been experimentally established beyond reasonable doubt, the essentials of the scientific method can be clearly and coherently revealed by their study. Third, the study of the behavior of matter and energy illustrates the usefulness of mathematics in precisely describing and rationalizing certain physical phenomena, and the expressiveness of mathematical equation.
Proposer: Please complete the following sections and attach appropriate documentation.

ASU--[SQ] CRITERIA

I. FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td></td>
<td>Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td>Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td></td>
<td>Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td></td>
<td>Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td></td>
<td>Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.</td>
<td></td>
<td>Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td></td>
<td>Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H.</td>
<td></td>
<td>Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td></td>
<td>Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td></td>
<td>Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td></td>
<td>Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>

III. - [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.

B. Includes a college-level treatment of some of the following topics (check all that apply below):

- Atomic and molecular structure
- Electrical processes
- Chemical processes
- Elementary thermodynamics
- Electromagnetics
- Dynamics and mechanics

[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SG] CRITERIA

1. FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>
[SG] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
<table>
<thead>
<tr>
<th>Course Prefix</th>
<th>Number</th>
<th>Title</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO</td>
<td>1051N</td>
<td>ENVIRONMENTAL BIOLOGY</td>
<td>SG</td>
</tr>
</tbody>
</table>

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I a-d: Course emphasizes mastery of basic scientific principles, addresses knowledge of scientific method, includes coverage of method of scientific inquiry, addresses potential for uncertainty in scientific inquiry.</td>
<td>This course describes and applies ecological principles of how the earth functions and the human impact on the environment as well as evaluates the scientific basis of environmental issues.</td>
<td>Modules II and III of course-syllabus and outline</td>
</tr>
<tr>
<td>I e-h: Illustrates usefulness of mathematics in scientific description and reasoning. Includes weekly laboratory and/or field sessions; submits written reports of laboratory experiments. Course is intro level.</td>
<td>Course analyzes potential solution to current environmental issues, provides skills for life-long learning, critical examination relative to environmental biology. Laboratories and field sessions to stimulate learning through hands-on experience.</td>
<td>Modules III and IV of course syllabus and outline</td>
</tr>
<tr>
<td>II a and b: Stresses understanding of the nature of basic scientific issues; develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
<td>Focus placed on the fundamentals of ecology and their relevance to human impact on natural ecosystems. Examines causes and solutions to environmental issues.</td>
<td>Modules I and II of course syllabus and outline.</td>
</tr>
</tbody>
</table>
Course Content Form
PIMA COMMUNITY COLLEGE

BIO 105IN Environmental Biology

Initiator: N. Schmidt
Campus: Downtown
Date: 12/15/2008

Credit Hours: 4.00
Lecture Periods: 3.00
Lab Periods: 3.00

Description:
Fundamentals of ecology and their relevance to human impact on natural ecosystems. Includes ecosystem structure and function, population dynamics, and human impacts on air, water, land, and biodiversity.
Information: IN designates an integrated lecture/lab combination.

Performance Objectives:
Upon successful completion of this course, the student will be able to:
1. Describe ecological principles of how the Earth functions.
2. Apply ecological principles and the human impact on the environment.
3. Evaluate scientific basis of environmental issues.
4. Describe possible causes and analyze potential solutions to current environmental issues.
5. Demonstrate skills necessary for life-long learning, critical examination, and personal decisions relative to environmental biology.
6. Perform activities to demonstrate improvement in the general education goals of oral communication, written communication, and critical thinking.

Outline:
I. Environmental Biology
 A. Science
 B. Scientific method
II. How the Earth Works
 A. Plate tectonics
 B. Climate and biomes
 C. Ecology
 1. Ecosystem components
 2. Energy flow and biogeochemical cycling
 3. Natural selection and evolution
 4. Population and community ecology
III. Humans on Earth
 A. History
 B. Population
 C. Economics and politics
IV. Human Impacts
 A. Biodiversity
 1. Description and importance
 2. Impacts upon and management
 B. Water
 1. Resources
 2. Uses and management
 C. Land
1. Soil
2. Food
3. Land and waste management

D. Air
1. Air pollution
2. Energy use, impacts, and conservation

E. Global Climate Impacts
1. Global climate change
2. Ozone depletion
3. Acid deposition
BIO 105: ENVIRONMENTAL BIOLOGY
Fall 2013 Syllabus (subject to change)
CRN 11131 (MW 8:40-11:20 am) and CRN 11298 (MW 11:40-2:20)

Instructor: Brad Fiero
Office: Tortolita E-207 | Phone: 206-6897 | E-mail: bfiero@pima.edu
Office Hours: MW 2:30 pm – 3:30 pm; TTh 1:00 pm – 2:30 pm. Also by appointment.

Environmental Biology Lab Manual [required] Get from bookstore or class homepage.
Class Web Site (http://wo.pima.edu/~bfiero/bio105/): includes much of the syllabus including
scoring rubrics, information on plagiarism and how to cite sources, my "fall-safe study technique,"
tips for PowerPoint presentations, assignments (and samples), and a lot more.

Description: Fundamentals of ecology and their relevance to human impact on natural ecosystems.
Includes ecosystem structure and function, population dynamics, and human impacts on air, water,
land, and biodiversity.

Course Objectives: Upon completion of this course, the student will be able to:
1. Synthesize ecological principles into an understanding of how the Earth functions.
2. Apply ecological principles to understand human impact on the environment.
3. Evaluate scientific basis of environmental issues.
4. Describe possible causes and analyze potential solutions to current environmental issues.
5. Demonstrate skills necessary for life-long learning, critical examination, and personal decisions
 relative to environmental biology.

Philosophy of class: I want this course to be interesting, applicable, and challenging for you. I hope
each of you is successful in this class, and I will enjoy meeting you outside of class to help you in your
progress toward success. But learning is something you do and requires active participation and effort.

Grading System: Based on percentage of total accumulated points from both lecture and lab.

<table>
<thead>
<tr>
<th>Evaluation:</th>
<th>Points:</th>
<th>Percent of Total Points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes:</td>
<td>350 pts (10 @ 35 pts)</td>
<td>35%</td>
</tr>
<tr>
<td>Activities:</td>
<td>150 pts (3 @ 50 pts)</td>
<td>15%</td>
</tr>
<tr>
<td>Labs:</td>
<td>500 pts (7 @ variable)</td>
<td>50%</td>
</tr>
<tr>
<td>Environmental Biology Event</td>
<td>Makeup/extra credit (35 pts)</td>
<td></td>
</tr>
<tr>
<td>Optional Comprehensive Final Exam</td>
<td>Makeup/extra credit (50 pts)*</td>
<td></td>
</tr>
</tbody>
</table>

Total Points: 1000 pts 100%

* The Final Exam has 100 points. Every point you get above 50 on the Final is how many
makeup/extra credit points you add to your class point total. For example, if you get a 90 on the Final
Exam, then you get 40 points (90-50) added to your total points.

Final Grade: A = 90 - 100% = 900 – 1000 points
B = 80 – 89% = 800 – 899 points
C = 70 – 79% = 700 – 799 points
D = 60 – 69% = 600 – 699 points
F = Below 60% = 000 – 599 points
POLICIES

Attendance Policy: You are expected to arrive to class on time and actively participate each class period. Tardies and absences usually result in lost points. Field trips, quizzes, and other class activities begin at the start of class and may be missed if you do not arrive to class on time. Quizzes are given at the beginning of class time and must be completed in the time allotted (usually 10-30 minutes but may be more or less). If you miss all or a portion of a class, then you are solely responsible for obtaining missed class materials. Complete attendance is mandatory during all group meetings and presentations; otherwise points will be forfeited. Because of insurance limitations, non-registered visitors are not allowed at class sessions or on field trips.

Make-up and Late Work Policy: Quizzes cannot be made up. No make-ups or late work accepted unless otherwise stated (see Rubrics online); however, most work may be turned in early when you know you have to miss a class. All work is due at or before the beginning of class unless otherwise noted. I suggest emailing your work to me early enough to receive a confirmation email from me. Email problems are not an acceptable excuse. Note: the Final Exam serves as make up/extra credit. If you are going to miss or have missed a class, please see instructor as soon as possible.

Group Projects: It is important that clear communication occurs between group members, and that expectations of each member are clear to all, and that all members fulfill what is expected of them on time. Each member of a group will be graded independently. Each in-class group meeting missed may result in one or more points missed.

Rebuttal System: If you think you were graded unfairly (or erroneously) on an assignment or quiz, please turn in a written explanation (rebuttal) with your graded assignment/quiz to me within two weeks. I will write a response and return it to you. An appointment can be set up if you disagree with the resolution.

Scholastic Ethics: You are expected to abide by the College’s Student Code of Conduct (http://www.pima.edu/student/services/studentcode/index.shtml). Breaches in scholastic ethic (e.g., cheating and plagiarism [see http://www.pima.edu/~bferer/plagiarism.htm]) will be dealt with severely.

Cheating includes using an electronic device during a quiz.

Be Courteous: Every student is expected to contribute to a positive, distraction-free learning environment. No use of cell phones, laptops, or other electronics in class except with instructor permission (points may be lost for infractions). No talking while the instructor or another student is talking to the class. In general, please be respectful of other students and the educational process.

Withdrawal (W): Students who fail to attend the first class or fail to attend 3 consecutive classes without notifying the instructor may be withdrawn. If you decide you cannot continue in class, then officially withdraw by the official deadline. If you wish to receive a grade of "W" after the withdrawal date, please request this in writing to the instructor by the first day of final exam week; however, granting a grade of "W" is up to the discretion of the instructor.

Incomplete (I): Given only when a student has missed 20% or less of the course material for a reason acceptable to the instructor. Eligibility for an incomplete requires earned grades that average "C" or above at the time of request.

Posting of Grades: Grades will be posted anonymously using a “secret code” supplied by the student. In addition, grades may be sent by email. If you do not wish your grades to be posted or emailed, please inform the instructor.

Americans with Disabilities Act. Pima Community College is committed to providing accommodations for qualified individuals with disabilities in a timely and effective manner. To request a reasonable accommodation, students must be registered with the campus Disabled Student Resources (DSR) Office. Accommodations will be made based on eligibility determined by Disabled Student Resources. Services can be requested at any time during the semester. Requesting services well in advance will help to ensure that resources are available when needed. Please contact a DSR office at 206-6698 or DSRhelp@pima.edu.

Mandatory Reporting Statement. Please be advised that, as a faculty member of Pima Community College, I am required by law (A.R.S. §13-3620), to report, upon reasonable belief, any situation that may indicate that a minor (defined as someone under the age of 18) has been the victim of child abuse (including physical injury and/or sexual conduct). This duty also includes the obligation to report any previous abuse of a minor, regardless of the current age of the victim to the College’s Department of Public Safety (DPS).
Bio 105 Environmental Biology Grade Tracking Sheet

Quizzes (350 pts): 10 highest @ 35 pts each = 35% of final grade

<table>
<thead>
<tr>
<th>Quiz 1</th>
<th>Quiz 2</th>
<th>Quiz 3</th>
<th>Quiz 4</th>
<th>Quiz 5</th>
<th>Quiz 6</th>
<th>Quiz 7</th>
<th>Quiz 8</th>
<th>Quiz 9</th>
<th>Quiz 10</th>
<th>Quiz 11</th>
<th>Quiz 12</th>
<th>Quiz 13</th>
</tr>
</thead>
</table>

Total of 10 highest Quizzes

Activities = 150 pts. = 15% of final grade

- Website Review (50)
- Easter's End (50)
- Ecological Footprint (50)

Total Activities

Laboratories = 500 pts. = 50% of final grade

- Desert Ecology Lab (170)
 - Question (5)
 - Draft Proposal (10)
 - Proposal (30)
 - Data Collection 1&2 (40)
 - Data Analysis (10)
 - Data Tables (25)
 - In Class Group Work (10)
 - Presentation (40)
- Water Public Hearing (70)
 - In Class Group Work (20)
 - Public Hearing (50)
- Fish Banks Lab (35)
- Waste Water Treatment Plant (35)
- Field Trip (35)
- Home Ecosystem Lab (120)
 - Group Outline (10)
 - Data Analysis (10)
 - Home Data (50)
 - Home Individual Outline (10)
 - Presentation (40)
- Land Use Simulation Lab (35)

Total Labs

Environmental Biology Event = 35 pts. extra

Optional Final Exam (100) All points above 50 are added to total

Total Points

FINAL GRADE:

- **A** = 900 - 1000 points
- **B** = 800 - 899 points
- **C** = 700 - 799 points
- **D** = 600 - 699 points
- **F** = 000 - 599 points

Grand Total
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>LECTURES</th>
<th>LABS</th>
<th>QUIZZES/ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed</td>
<td>8/28</td>
<td>Introduction</td>
<td></td>
<td>Assign Website Review Topics</td>
</tr>
<tr>
<td>Mon</td>
<td>9/2</td>
<td>HOLIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>9/4</td>
<td>Science (Ch 2)</td>
<td>Desert Eco Lab (DEL): Introduction</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>9/9</td>
<td>Social Traps (Ch 1)</td>
<td></td>
<td>Quiz 1: Science</td>
</tr>
<tr>
<td>W</td>
<td>9/11</td>
<td>Plate Tectonics (not in book)</td>
<td>DEL: Research Question (5)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>9/16</td>
<td>Earth’s Climate (not in book)</td>
<td>DEL: Proposal Draft (10)</td>
<td>Quiz 2: Social Traps and Plate Tectonics</td>
</tr>
<tr>
<td>W</td>
<td>9/18</td>
<td>Earth’s Climate (not in book)</td>
<td>DEL: Proposal Due (30)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>9/23</td>
<td>Ecosystem Ecology (Ch 6)</td>
<td>DEL: Data Collection (20)</td>
<td>Quiz 3: Earth’s Climate</td>
</tr>
<tr>
<td>W</td>
<td>9/25</td>
<td>Population Ecology (Ch 7)</td>
<td>DEL: Data Collection (20)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>9/30</td>
<td>Community Ecology (Ch 8)</td>
<td>DEL: Data Analysis (10)</td>
<td>Quiz 4: Ecosystem and Population Ecology</td>
</tr>
<tr>
<td>W</td>
<td>10/2</td>
<td>Natural Selection (Ch 10)</td>
<td>DEL: Data Due (25)</td>
<td>Eco Footprint Intro</td>
</tr>
<tr>
<td>Mon</td>
<td>10/7</td>
<td>Biodiversity (Ch 9-11)</td>
<td>DEL: Group Prep (10)</td>
<td>Quiz 5: Community Ecology and Natural Selection</td>
</tr>
<tr>
<td>W</td>
<td>10/9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>10/14</td>
<td>Human Populations (Ch 4)</td>
<td>WPH: Group Prep (5)</td>
<td>Quiz 6: Biodiversity and Public Hearing Tips</td>
</tr>
<tr>
<td>W</td>
<td>10/16</td>
<td>Human Populations (Ch 4)</td>
<td>WPH: Group Prep (5)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>10/21</td>
<td>Environmental Economics (Ch 5)</td>
<td>WPH: Group Prep (5)</td>
<td>Quiz 7: Human Populations</td>
</tr>
<tr>
<td>W</td>
<td>10/23</td>
<td>Fish Banks Lab (35) (Ch 13-14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number in parentheses following each activity indicates the activity’s point value.
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>LECTURES</th>
<th>LABS</th>
<th>ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>10/28</td>
<td>Soil (Ch 12)</td>
<td>WPH: Group Prep (5)</td>
<td>Quiz 8: Environmental Economics and Fish Banks</td>
</tr>
<tr>
<td>W</td>
<td>10/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>11/4</td>
<td>Water Resources (Ch 15-16)</td>
<td>Home Eco Lab: Introduction</td>
<td>Quiz 9: Soil and Public Hearing</td>
</tr>
<tr>
<td>W</td>
<td>11/6</td>
<td></td>
<td>Waste Water Field Trip (35)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>11/11</td>
<td>HOLIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>11/13</td>
<td>Food (Ch 18)</td>
<td>Home Eco Group Outline (10)</td>
<td>Quiz 10: Water</td>
</tr>
<tr>
<td>Mon</td>
<td>11/18</td>
<td>Air Pollution (Ch 21)</td>
<td>Home Eco Data Analysis (10)</td>
<td>Quiz 11: Food</td>
</tr>
<tr>
<td>W</td>
<td>11/20</td>
<td></td>
<td>Home Eco Data (50) Field Trip (35)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>11/25</td>
<td>Ozone Depletion and Acid Deposition (Ch 2)</td>
<td>Quiz 12: Air Pollution and Field Trip</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>11/27</td>
<td>Climate Change (Ch 22)</td>
<td>Home Ecosystem Individual Outline due (10)</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>12/2</td>
<td></td>
<td>Home Ecosystem Presentations</td>
<td>Quiz 13: Ozone, Acid Dep., and Climate Change</td>
</tr>
<tr>
<td>W</td>
<td>12/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>12/9</td>
<td></td>
<td>Land Use Simulation (35)</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>12/11</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>12/16</td>
<td>Final Exam (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number in parentheses following each lab and activity indicates its point value.

Website Review Topics
- Environmental News
- Environmental Organizations (non-govt)
- Environmental Agencies (govt)
- Tucson Environmental Info
- Science
- Social Traps
- Plate Tectonics
- Carbon Cycle
- Population Ecology
- Evolution
- Endangered Species
- Introduced Species
- Desert Ecology
- Human Population Growth/Control
- Environmental Economics
- Overfishing
- Soil
- Central Arizona Project (CAP)
- Water Use
- Water Pollution
- World Food Resources
- Air Pollution
- Ozone Depletion
- Acid Deposition
- Global Warming
- Energy Use/Conservation
- Alternative Energy Sources
- Solid Waste
- Recycling

v