GENERAL STUDIES COURSE PROPOSAL COVER FORM
(ONE COURSE PER FORM)

1.) DATE: 2/26/2014
2.) COMMUNITY COLLEGE: Pima Community College

3.) COURSE PROPOSED:
Prefix: BIO Number: 115 Title: WILDLIFE OF NORTH AMERICA Credits: 4

CROSS LISTED WITH:
Prefix: Number: ; Prefix: Number: ; Prefix: Number:

4.) COMMUNITY COLLEGE INITIATOR: ASU Transfer Systems Development
PHONE: 7-2424
FAX:

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable are not eligible for the General Studies Program.

MANDATORY REVIEW:
☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:
Core Areas: Natural Sciences (SG) Awareness Areas: Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) DOCUMENTATION REQUIRED
☒ Course Description
☒ Course Syllabus
☒ Criteria Checklist for the area
☒ Table of Contents from the textbook required and/or list of required readings/books
☒ Description of how course meets criteria as stated in item 6.

8.) THIS COURSE CURRENTLY TRANSFERS TO ASU AS:
☐ DEC prefix
☒ Elective

Current General Studies designation(s): NONE

Effective date: 2014 Fall Course Equivalency Guide

Is this a multi-section course? ☐ yes ☐ no
Is it governed by a common syllabus? ☐ yes ☐ no

Chair/Director: Chair/Director Signature:

AGSC Action: Date action taken: ☐ Approved ☐ Disapproved

Effective Date:
Rationale and Objectives

In a relatively short time in the history of civilized societies, humankind moved from what was essentially an agrarian population into an industrial age, which in recent years has been profoundly shaped by such scientific and technological advances as genetic engineering, the computer, and space exploration. Our history of irrepressible ingenuity makes a compelling case for a future that will be even more profoundly influenced by science and technology. It is imperative that we react expeditiously and effectively to the problems and the promise that these advances create. We must ensure that technological change is directed to the benefit of society and that it will promote human dignity and values. Success in achieving this goal will depend upon the insight and knowledge of political and public opinion leaders, and the scientific enlightenment of educated citizens. To a significant degree, the ability of these individuals to understand the nature of the issues and the alternative courses of action will be determined by the quality of science presented at the nation’s institutions of higher learning.

The recommendation of at least one laboratory course that includes a substantial introduction to the fundamental behavior of matter and energy in physical or biological systems derives from a number of considerations. First, all physical and biological phenomena have at their roots the fundamental principles governing the behavior of matter and energy. These principles have been shown over a period of time to be a value in reliably predicting and rationalizing a broad range of phenomena. Unless the lines to these roots are established, our understanding of the broader range of the sciences, and other fields upon which these sciences impinge, will be impaired. Second, because these fundamental principles have been experimentally established beyond reasonable doubt, the essentials of the scientific method can be clearly and coherently revealed by their study. Third, the study of the behavior of matter and energy illustrates the usefulness of mathematics in precisely describing and rationalizing certain physical phenomena, and the expressiveness of mathematical equation.

10/1989
Proposer: Please complete the following sections and attach appropriate documentation.

ASU-[SQ] CRITERIA

I. - FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>

NOTE: CRITERIA FOR [SG] COURSES BEGIN ON PAGE 4.
III. - [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Includes a college-level treatment of some of the following topics (check all that apply below):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Atomic and molecular structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Electrical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Chemical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Elementary thermodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Electromagnetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Dynamics and mechanics</td>
</tr>
</tbody>
</table>

[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SG] CRITERIA

1. **FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>1. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>2. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>4. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>5. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
<tr>
<td>[SG] REQUIREMENTS CANNOT BE MET BY COURSES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Presenting a qualitative survey of a discipline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focusing on the impact of science on social, economic, or environmental issues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criteria (from checksheet)</td>
<td>How course meets spirit (contextualize specific examples in next column)</td>
<td>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>I a-d: Course emphasizes mastery of basic scientific principles, addresses knowledge of scientific method, includes coverage of method of scientific inquiry, addresses potential for uncertainty in scientific inquiry.</td>
<td>Course examines diversity and origins of wildlife in North America and the importance of habitat to wildlife. Introduction to mammals, birds, fish, reptile, amphibians and selected invertebrates.</td>
<td>Modules I through IV of course syllabus and outline</td>
</tr>
<tr>
<td>I e-h: Illustrates usefulness of mathematics in scientific description and reasoning. Includes weekly laboratory and/or field sessions; submits written reports of laboratory experiments. Course is intro level.</td>
<td>This course explores habitats, wildlife interrelationships, population dynamics and national, state and private wildlife agencies. Laboratories and field session are used.</td>
<td>Modules V and VI of course syllabus and outline</td>
</tr>
<tr>
<td>II a and b: Stresses understanding of the nature of basic scientific issues; develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
<td>Wildlife origins, diversity and habitat are discussed. Wildlife interrelationships as well as population growth and regulation are examined.</td>
<td>Modules VII and VIII of course syllabus and outline</td>
</tr>
</tbody>
</table>
Course Content Form
PIMA COMMUNITY COLLEGE

Start Term: 200920

BIO 115IN Wildlife of North America
Initiator: Brad Fiero
Campus: West
Date: 08/29/2008
Prerequisite(s):
Corequisite(s):
Recommendation:
Classification: Transfer

CEU/Credit: 4.0
Lecture: 3.0
Lab Periods: 3.0

Description:
Introduction to the mammals, birds, fish, reptiles, amphibians and selected invertebrates of North America. Includes habitats, wildlife interrelationships, population dynamics, and discussion of national, state, and private wildlife agencies. Also includes a laboratory emphasis on native Arizona species.

Information: IN is the integrated version of the course with the lecture and lab taught simultaneously.

Performance Objectives:
Upon successful completion of the course, the student will be able to:
1. Describe diversity and origins of wildlife in North America.
2. Explain the important of habitat to wildlife.
3. Describe how wildlife have adapted to various habitat types and each other.
4. Describe how and why wildlife populations change over time.
5. Discuss the role of various wildlife agencies and legislation in wildlife management.
6. Apply wildlife principles to interpret personal observations of wildlife.
7. Demonstrate skills necessary for life-long learning and making personal decisions relative to wildlife biology and management.

Course Outline:
I. Science
II. Wildlife Diversity
 A. Select invertebrates
 B. Vertebrates
III. Wildlife Origins
 A. Natural selection and evolution
 B. Immigrations and introductions
IV. Habitat
 A. Components
 B. Utilization by wildlife

BIO 115IN – Wildlife in North America 08/29/2008
V. Adaptations
 A. General principles
 B. Selected biomes

VI. Wildlife Interrelationships
 A. Mutualism
 B. Competition
 C. Predation and parasitism

VII. Population Dynamics
 A. Reproductive strategies
 B. Types of population growth and regulation

VIII. Wildlife Management
 A. Principles
 B. Agencies and legislation
WILDLIFE OF NORTH AMERICA
SYLLABUS - BIO 115 - Spring 2014

Instructor: Dr. Charles Liley
Phone: Dept. Phone: 206-6031 Faculty Resource Center phone number: 206-6723
Email address: aziguana@cox.net
Pima Voice Mail access to be announced during class

Office Hours: By appointment.
Text: None required

CRN: 20903 Meeting Times: T Th 11:40 - 2:20 Hours: 4 Room: K131
CRN: 22409 Meeting Times: T Th 2:40 - 5:20 Hours: 4 Room: K131

Description: Introduction to the mammals, birds, fish, reptiles, amphibians, and selected invertebrates of North America. Includes habitats, wildlife interrelationships, population dynamics, and discussion of national, state and private wildlife agencies. Also includes a laboratory emphasis on native Arizona species.

Course Objectives: Students will:
1. Describe diversity and origins of wildlife in North America.
2. Explain importance of habitat to wildlife.
3. Describe how wildlife has adapted to various habitat types and to each other.
4. Describe how and why wildlife populations change over time.
5. Discuss the role of various wildlife agencies and legislation in wildlife management.
6. Apply wildlife principles to interpret personal observations of wildlife.
7. Demonstrate skills necessary for life-long learning and making personal decisions relative to wildlife biology and management.

Grading System: Based on percentage of total accumulated points from lecture, lab & special projects.

THEORY EXAMS
Two theory exams (100 points each) 200

LABORATORY/SEMINAR

Individual Bloopers/Success/Invader/Controversy Special Project 10
Individual primary species project 20
Biome/Secondary Species Group project 20
Laboratory exercises (Exact number of points based on time factors) 25 - 35
Laboratory special nature clinic project 10

Total Points 285 - 300

Final Grade:
A = 90 - 100%
B = 80 < 90%
C = 70 < 80%
D = 60 < 70%
F = Below 60%
POLICIES

Attendance Policy: You are expected to arrive to class on time (see "Make-up Policy" below) and to actively participate during each class period. Three unexcused absences may result in withdrawal. If you miss all or a portion of a class, then you are solely responsible for obtaining missed class material from fellow students.

A vital part of the student Special Projects presentations is class participation. Thus attendance is mandatory. Students who arrive late, leave early or fail to attend during the Special Projects classes will have 10% per day removed from their Special Project score. Quizzes and/or short reports (worth five points each) may also be given following student presentations. Students who do not present projects on time will have points (10%) deducted for each day's delay in their presentation (includes written portions of the projects).

Make-up Policy: Unannounced quizzes may occur. Quizzes and laboratory exercises can not be made up. Late assignments that can be made up may be accepted but will be penalized 10 to 25%

Unannounced exams ("pop quizzes") are possible if attendance or class participation is not adequate. Points for these exams will be added to the total points possible. Quizzes can not be made up. Each student may drop only one "pop" quiz. The points are lost even if the student has an excuse!

Taking exams and Recording of Grades: Exams are timed. Students arriving late will not be given extra time to finish the exam and must turn in their test at the end of the regular time. Students who miss the exam will need a documented and acceptable excuse before they will be allowed to take the exam. After review, all exams must be returned. I keep all exams.

Scholastic Ethics: Students are expected to abide by the PCC Student Scholastic Ethics Code (copies are available in the library). Violations include but are not limited to the following: cheating, plagiarism, collusion, compromising instructional and test materials, and misrepresentation and fraud. This includes printing and "cutting and pasting" material from the Internet and representing this material as yours. Students found in a scholastic ethics violation situation will be dealt with in accordance with the appropriate Pima College policies and procedures.

Electronic Devices: All electronic devices must be turned off during class time. This includes, but is not limited to, cell phones, laptop computers, I pads, I pods, photo taking devices and other similar electronic items. Students who wish to use an audio device to record the instructor's lecture (this does not include student presentations) must clear this with the instructor first. Students who desire to use their laptop to take notes of the lecture must also clear this with the instructor first. If a student uses an electronic device (such as a laptop) during class time for other than taking notes of the lecture, that student will be required to leave the class room.

During exams all electronic devices must be turned off and removed from the desk or table top. In addition these devices must be out of the student's viewing range. During laboratory exercises all electronic devices are to remain off and are not to be used. Students found using devices mentioned in the previously mentioned situations will be asked to leave that class period and thus will not be able to finish the current exercise they are engaged in. This will most likely cause a significant reduction in that day's grade.

Class Ground Rules and Lab Safety: Periodically certain rules and safety procedures will be introduced during certain class and lab sessions. These must be adhered to for the safety of all students.

Official Withdrawal (W): Last day for drop/refund is February 3. The last day to withdraw is April 10. Withdrawal and Drop/Refund Dates indicated in the current catalog supersede all dates listed in this syllabus. Note that if you stop coming to class and do not officially withdraw, your final grade will be based on the total number of points you have earned.
A withdrawal (W) will not be given to avoid D or F grades.

Incomplete (I): Given only when a student has missed one lecture exam or one special project for a reason acceptable to the instructor. I eligibility requires earned grades averaging “C” or above.

Posting of Grades: Grades will not be posted. (subject to change based on school policy)

Americans with Disabilities Act: Pima Community College is committed to providing accommodations for qualified individuals with disabilities in a timely and effective manner. To request a reasonable accommodation, students must be registered with the campus Disabled Student Resources (DSR) office. Accommodations will be made based on eligibility determined by Disabled Student Resources. Services can be requested at any time during the semester. Requesting services well in advance will help to ensure that resources are available when needed. Please contact a DSR office at 206-6688 or DSRhelp@pima.edu. (5/1/12)

Required Mandatory Reporting statement: Pima Community College complies with Arizona State Statutes pertaining to immediate reporting of abuse of a minor. Abuse is defined as sexual, physical or neglect, and a minor is defined as a person under age 18 (ARS 13-3620). Students who disclose abuse of a minor, either personally experienced as a minor any time in the past or present, or that of another minor, to any College employee legally requires that employee to file an immediate report to PCC DPS*. (PCC SPG-1505/BB).

PHILOSOPHY OF CLASS

I want this course to be interesting, applicable, and challenging for you. I expect class participation during class projects and discussions. I hope all of you are successful in this class, and I will enjoy meeting you outside of class to help you in your progress towards meeting class goals. But learning is something you must do and requires active participation and effort. Past experience has shown good class attendance to be of major importance in class success. The outcome I hope to achieve is that each of you will become more aware of and better understand the world you live in.

Class Schedule Enclosed

The schedule is tentative and will be adjusted to fit the needs of the class. Any changes will be announced during in-class time. If time and conditions allow we may schedule a trip to the Arizona-Sonoran Desert Museum. The Arizona-Sonoran Desert Museum currently charges $5.00/ person for educational field trips (fee subject to change). These trips may require written reports.

Directives for Projects I and II enclosed

Directives for the Laboratory Projects to include the Laboratory Special Nature Clinic Project will be announced

This syllabus is subject to change.

Precourse Student Survey

A student survey may be administered to help develop the direction and special topic emphasis for this course.
Comments on Special Projects and Laboratory Special Projects

The following are used as the grading criteria:

Note that there is minimal guidance given. That is because I am encouraging you to be creative, show initiative, and make decisions on what information to present and how to present it.

Your goal is to educate and entertain!

- Content
- Enthusiasm counts!
- Be organized
- Use of visual aids (use of video is restricted -- see instructor for more information)
- Proper use of time (such as too long/short)
- Outline and source material turned in

Group projects:

- Are they organized and did they cover the material adequately without duplicating content?

SPECIAL PROJECTS

Special Project I has two parts. Part I (Primary Species) and Part II (Biome and Secondary Species). Project I and Project II are presented at different times during the semester. Check the class schedule for the dates that each presentation is due. All students must turn in a typed outline with cited sources on the first day the projects are due (that is the first day that the presentations start). If the outline and/or sources are not turned in on the first project due date then points (up to 20%) will be deducted from the student’s final presentation score.

Students **must select North American species for all projects!** Exceptions must be approved.

Students who plan to use Power Point presentations must:

1. turn in their printed outline and source and may turn in their Power Point presentation.
2. check to see that their presentation works properly prior to the day they present
3. be aware that the new 2010 version may not work on the current class room computer

Special Project I:

Each student must select a biome. There are only two to four student openings per biome. Biome selection is based on a first to sign-up basis.

Selection of the biome and species must be completed by the date announced during class.

Each student will select a primary animal species. The animal selected must be extant and indigenous to North America and must occur naturally in the student’s selected biome.

Select your animal from the following categories:

- fish, amphibians, reptiles, birds, mammals or invertebrates

Each student will also select a secondary animal species from the student’s selected biome.
This species must be from a different category (class) than the primary species. The secondary species is presented only during the group biome presentations.

Students may not select the same primary or secondary species. Animal species selections are based on "first come, first served bases". That is, the first student to sign the species register folder has the right to present that species. Additional points are removed from the student's presentation grade if species are duplicated. Both primary and secondary species must occur naturally in the student's selected biome.

Special Project I Presentations:

Part I: Primary Species (20 points)

Each student must be prepared to present orally their primary animal species on the first date indicated by the class schedule. Each student presentation should last 12 minutes. Shorter or longer presentations will result in loss of points.

All students must turn in their typed outline and sources on the first day the project is due (whether the student presents that day or not). The sources must include at least four references. The internet is not to be used as the sole sourcing area. At least one of the four sources must come from a printed reference (such as a book, journal etc). Do not use Wikipedia as one of your required four sources. Using only internet sources or not having enough sources will result in loss of points.

Failure to turn in an outline and/or sources on first day of the presentations will result in loss of points.

Consider at least the following information for presentation: areas covered in the course concept lectures, physical characteristics, range (past/present/future), how food is obtained, predator prey relationships, mating strategy

Include what you thought was the most interesting characteristic(s) of your species

However, you must ultimately decide which information should be included based on time constraints, your interests and educational value.

Part II: Biome and secondary species presentations (20 points)

Each biome group will present an oral seminar discussing their biome. The time each student must present is 12 minutes. All groups (thus all students) must be prepared to present their topic on the first day that the project presentations start.

The biome presentation may include additional information on each student's primary species and MUST include each student's secondary species. Emphasis should be placed on how species adapt to the biome (special adaptations needed for surviving in the selected biome).

Animals and plants covered in the biome presentation must inhabit the specific biome presented and must also be native to North America.

All students must turn in their typed outline and sources on the first day the project is due (whether the student presents that day or not). The sources must include at least four references. The internet is not to be used as the sole sourcing area. At least one of the four sources must come from a book, journal etc. Do not use Wikipedia as one of your listed
Sources: Using only internet sources or not having enough sources will result in loss of points.

Students using PowerPoint in their presentations (Part I – Primary Species and Part II – Biome) must use their own words and must not use "cut and paste" from the internet or direct wording from any source. Plagiarism within PowerPoint presentations is not acceptable. All PowerPoint presentations must be turned in the day of the presentation for review. Any presentation found to contain "cut and paste" and thus plagiarism will be given a failing grade for the project. Photos, charts and graphs are not included.

Special Project II: Bio-bloopers / Alien Invaders etc. (10 points)

Each student will select a topic from one of the following categories*:

a. Exotic Species or Alien Invaders: These refer to species from another area that have invaded a new habitat. This introduction was not planned by biologists.

b. Bio-Bloopers: The introduction of a new species to an area that was implemented by biologists but didn’t turn out as planned is an example of a bio-bloop.

c. Disease or Habitat Destruction

d. Significance of Riparian Areas

e. Current Wildlife Controversies

f. Bio-Success Stories

* Other related topics may be selected with prior approval from the instructor.

Each topic must be related to North American wildlife. If you are not sure if a topic meets the above criteria ask the instructor for guidance.

Each student will present a 7 minute oral presentation on their selected topic. Points are lost for presentations that are too short or too long.

No two students may present the same topic. Topics are reserved by signing the project folder on a "first come first served basis". Presenting the same topic will cause a reduction in grade.

Signing up for the project must occur prior to the date announced by the instructor.

Each student must hand to the instructor an outline and list of sources prior to the presentation. Failure to hand in outline and/or list of sources prior to the presentation will result in loss of points.

All students must be prepared to present their topics on the first day that the presentations begin. A 10% per day point reduction will occur for late presentations.

Laboratory Special Project: “Nature Table Clinic” (10 points)

Each student will select a specific topic related to North American Wildlife. This topic will be something that is suitable for a "table clinic". Topics may be similar to the Special Project II (Bio-bloopers, Alien Invaders etc.). Students must work alone.

This project is a visual project. Instead of the previous projects which were oral presentations with visual support, this project is to be a visual project with no oral support. Be creative and think of how to draw attention to your project and how clearly you can get your point(s) across. Students should strive to keep the amount of written material to a minimum.
The purpose is to educate other students on a wildlife topic that is of personal interest to you. Students may not present the same topic. Topics are reserved by signing the project folder on a “first come first served basis”. Students presenting the same topic may end up with a 25% grade reduction for their project. Specific guidance concerning topic selection will be given if needed during the course.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 21</td>
<td>Intro / Concepts – an overview</td>
<td>Interest Survey</td>
</tr>
<tr>
<td>Jan 23</td>
<td>Ghosts of the Past I / II</td>
<td>Wildlife Review Lab</td>
</tr>
<tr>
<td>Jan 28</td>
<td>Wildlife Diversity / Habitat</td>
<td>Crankshaft Pit Study</td>
</tr>
<tr>
<td>Jan 30</td>
<td>Animal Interactions</td>
<td></td>
</tr>
<tr>
<td>Feb 4</td>
<td>Natural Selection</td>
<td>Biome Lab Groups Formed</td>
</tr>
<tr>
<td>Feb 6</td>
<td>Principles of Adaptation</td>
<td>Harris’ Hawk presentation</td>
</tr>
<tr>
<td>Feb 11</td>
<td>Predators and Their Prey</td>
<td></td>
</tr>
<tr>
<td>Feb 13</td>
<td>Mating and Reproductive Strategies</td>
<td></td>
</tr>
<tr>
<td>Feb 18</td>
<td>Student Presentations: Primary Species</td>
<td></td>
</tr>
<tr>
<td>Feb 25</td>
<td>Student Presentations: Primary Species</td>
<td></td>
</tr>
<tr>
<td>Feb 27</td>
<td>Student Presentations: Primary Species</td>
<td></td>
</tr>
<tr>
<td>Mar 4</td>
<td>Amphibians</td>
<td>Exam Review</td>
</tr>
<tr>
<td>Mar 6</td>
<td>Amphibians / Reptiles</td>
<td></td>
</tr>
<tr>
<td>Mar 11</td>
<td>Exam 1 / Reptiles</td>
<td>Barn Owl Study</td>
</tr>
<tr>
<td>Mar 13</td>
<td>Mammals</td>
<td></td>
</tr>
<tr>
<td>Mar 25</td>
<td>Mammals / Batmania</td>
<td>Skulls / Owl Pellet Lab Part I</td>
</tr>
<tr>
<td>Mar 27</td>
<td>Masters of the World (Arthropods)</td>
<td>Skulls / Owl Pellet Lab Part II</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Bloopers / Suc / Inv / Contro Student Reports</td>
<td></td>
</tr>
<tr>
<td>Apr 3</td>
<td>Bloopers Reports cont.</td>
<td></td>
</tr>
<tr>
<td>Apr 8</td>
<td>Arthropods / Birds</td>
<td></td>
</tr>
<tr>
<td>Apr 10</td>
<td>Wildlife Management / Agencies</td>
<td>Guest Speaker (Tentative)</td>
</tr>
<tr>
<td>Apr 15</td>
<td>Group Biome / Sec. Species Presentation</td>
<td></td>
</tr>
<tr>
<td>Apr 17</td>
<td>Group Biome / Sec. Species Presentation</td>
<td></td>
</tr>
<tr>
<td>Apr 22</td>
<td>Group Biome / Sec. Species Presentation</td>
<td></td>
</tr>
<tr>
<td>Apr 24</td>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>Apr 29</td>
<td>Florida Panther</td>
<td>Panther Lab I (Time dependent)</td>
</tr>
<tr>
<td>May 1</td>
<td>Florida Panther</td>
<td>Panther Lab II (Time dependent)</td>
</tr>
</tbody>
</table>
May 6 Florida Panther Lab Panther Lab III (Time dependent)
May 8 Special Nature Clinic Lab (Visual) Special Nature Clinic Lab

May 13 Final Exam Review
May 15 Final Exam

* Tentative schedule and is subject to change as needed
* Lectures, laboratory projects and guest speakers are subject to change