GENERAL STUDIES COURSE PROPOSAL COVER FORM
(ONE COURSE PER FORM)

1.) DATE: **3/11/14**
2.) COMMUNITY COLLEGE: **Pima Community College**

3.) COURSE PROPOSED:
Prefix: **BIO**
Number: **156**
Title: **INTRODUCTORY BIOLOGY FOR ALLIED HEALTH**
Credits: **4**

CROSS LISTED WITH:
Prefix:
Number: ; Prefix:
Number:

4.) COMMUNITY COLLEGE INITIATOR: **ASU TRANSFER SYSTEMS DEVELOPMENT**
PHONE:
FAX: **4807272424**

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable are not eligible for the General Studies Program.

MANDATORY REVIEW:

☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) **PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:**

Core Areas: **Natural Sciences (SQ)**
Awareness Areas:
Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) **DOCUMENTATION REQUIRED**

☒Course Description
☒Course Syllabus
☒Criteria Checklist for the area
☒Table of Contents from the textbook required and/or list or required readings/books
☒Description of how course meets criteria as stated in item 6.

8.) **THIS COURSE CURRENTLY TRANSFERS TO ASU AS:**

☒ DEC
☒ BIO
☐ Elective

Current General Studies designation(s): **NONE**

Effective date: **2014 Fall** Course Equivalency Guide

Is this a multi-section course?
☐ yes ☐ no

Is it governed by a common syllabus?
☐ yes ☐ no

Chair/Director:
Chair/Director Signature:

AGSC Action:
Date action taken:
☐ Approved ☐ Disapproved

Effective Date:
Rationale and Objectives

In a relatively short time in the history of civilized societies, humankind moved from what was essentially an agrarian population into an industrial age, which in recent years has been profoundly shaped by such scientific and technological advances as genetic engineering, the computer, and space exploration. Our history of irrepressible ingenuity makes a compelling case for a future that will be even more profoundly influenced by science and technology. It is imperative that we react expeditiously and effectively to the problems and the promise that these advances create. We must ensure that technological change is directed to the benefit of society and that it will promote human dignity and values. Success in achieving this goal will depend upon the insight and knowledge of political and public opinion leaders, and the scientific enlightenment of educated citizens. To a significant degree, the ability of these individuals to understand the nature of the issues and the alternative courses of action will be determined by the quality of science presented at the nation's institutions of higher learning.

The recommendation of at least one laboratory course that includes a substantial introduction to the fundamental behavior of matter and energy in physical or biological systems derives from a number of considerations. First, all physical and biological phenomena have at their roots the fundamental principles governing the behavior of matter and energy. These principles have been shown over a period of time to be a value in reliably predicting and rationalizing a broad range of phenomena. Unless the lines to these roots are established, our understanding of the broader range of the sciences, and other fields upon which these sciences impinge, will be impaired. Second, because these fundamental principles have been experimentally established beyond reasonable doubt, the essentials of the scientific method can be clearly and coherently revealed by their study. Third, the study of the behavior of matter and energy illustrates the usefulness of mathematics in precisely describing and rationalizing certain physical phenomena, and the expressiveness of mathematical equation.
Proposer: Please complete the following sections and attach appropriate documentation.

ASU--[SQ] CRITERIA

I. - FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>A. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>B. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>C. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>D. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>E. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>F. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>G. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>H. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>A. Stress understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td>☑️</td>
<td>☐️</td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>

III. - [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Includes a college-level treatment of some of the following topics (check all that apply below):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Atomic and molecular structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Electrical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Chemical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Elementary thermodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Electromagnetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Dynamics and mechanics</td>
</tr>
</tbody>
</table>

[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SG] CRITERIA

I. - FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Course emphasizes the mastery of basic scientific principles and concepts.

2. Addresses knowledge of scientific method.

3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.

4. Addresses potential for uncertainty in scientific inquiry.

5. Illustrates the usefulness of mathematics in scientific description and reasoning.

6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.

7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.

8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.

II. - AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

A. Stresses understanding of the nature of basic scientific issues.

B. Develops appreciation of the scope and reality of limitations in scientific capabilities.

C. Discusses costs (time, human, financial) and risks of scientific inquiry.
<table>
<thead>
<tr>
<th>REQUIREMENTS CANNOT BE MET BY COURSES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Presenting a qualitative survey of a discipline.</td>
</tr>
<tr>
<td>• Focusing on the impact of science on social, economic, or environmental issues.</td>
</tr>
<tr>
<td>• Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.</td>
</tr>
</tbody>
</table>
Course Prefix | Number | Title | Designation
--- | --- | --- | ---
BIO | 156 | INTRODUCTION TO BIOLOGY FOR ALLIED HEALTH | SQ

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-D. Course emphasizes mastery of basic scientific principles, addresses knowledge of scientific method, includes coverage of methods of scientific inquiry, addresses potential for uncertainty in scientific inquiry.</td>
<td>Course examines scientific method, methods of inquiry (such as microscopes, measurement tools, etc.). Students are expected to utilize steps of scientific method and methods of scientific inquiry in laboratory experiments. Limits of scientific inquiry discussed in lecture/lab.</td>
<td>Page 1, Outline: IA-B, IIA-C</td>
</tr>
<tr>
<td>IE-H. Illustrates usefulness of mathematics in scientific description and reasoning. Includes weekly laboratory; submits written reports of laboratory experiments. Course is intro level.</td>
<td>Course is an Introduction to biological concepts pertinent to Allied Health. The course has weekly laboratory sessions that require students to complete and turn in written reports/assignments. Usefulness of math demonstrated through scientific measurements and reasoning.</td>
<td>Page 1. Outline: 1 Page 4-5: Laboratory assignments.</td>
</tr>
<tr>
<td>2A and B. Provides a substantial, quantitative Introduction to the fundamental principles governing behavior of matter and energy in physical or biological systems. B: Includes atomic structure, chemical processes, elementary thermodynamics.</td>
<td>Course examines energy in biological systems. Includes basic general chemistry, chemistry of the four basic types of macromolecules, enzymes, metabolism. Discusses elementary thermodynamics via</td>
<td>Page 1-2: Course outline. Demonstrates topics discussed: general chemistry, elementary biochemistry, enzymes, metabolism, energy transfer.</td>
</tr>
<tr>
<td>energy transfer in biological systems.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Content Form
PIMA COMMUNITY COLLEGE

Classification: Occupational

BIO 156IN Introductory Biology for Allied Health

Initiator: Steve Mackie
Campus: West
Date: 1/28/2011

Credit Hours: 4.00
Lecture Periods: 3.00
Lab Periods: 3.00

Description:
Introductory Biology for Allied Health Introduction to biology for the health professions. Includes principles of science, scientific measurement and laboratory techniques, chemistry of life, cell anatomy and physiology, cellular reproduction, patterns of inheritances and human tissues.

Recommendation:
Completion of CHM 130/130LB or 130IN before enrolling in this course.

Information:
IN is the integrated version of the course with the lecture and lab taught simultaneously.

Performance Objectives:
Upon successful completion of the course, the student will be able to:

1. Perform activities to demonstrate improvement in the general education goals of communication and critical thinking.
2. Demonstrate biology study skills necessary for anatomy and physiology.
3. Identify key components of the scientific method and apply the scientific process.
4. Demonstrate the ability to safely use biological laboratory techniques.
5. Demonstrate the correct use of a light microscope, metric tools for measuring length, mass, and volume, and laboratory safety skills.
6. Describe and give examples of life's hierarchy of organization.
7. Compare and contrast prokaryotic and eukaryotic cells.
8. Explain the basic chemical processes of life.
9. Describe the four categories of "macromolecules" and why each is important for cellular structure and functions.
10. Explain how enzymes function.
11. Describe the structure of the cellular organelles and how each functions.
12. Describe specifically membrane transport mechanisms, protein synthesis and packaging, and anaerobic and aerobic cellular respiration.
13. Describe the cell cycle and the purposes, products, and processes of mitosis and meiosis.
14. Explain how genes are expressed and inherited, and the molecular biology of gene expression.
15. Describe the principles of Mendelian Genetics.
16. Describe and give examples of the primary human tissues, and where in the body each can be found.
17. Explain how a fertilized egg develops into an early embryo and describe the fates of the three primary germ layers. (Optional)

Outline:
I. Principles of Science
 A. Scientific process and scientific experimentation
 B. Analyzing and reporting results
II. Scientific Measurement and Laboratory Techniques
 A. Light microscopy
III. Introduction to Biology
 A. Levels of organization (life's hierarchy)
 B. Cellular diversity (prokaryotic vs. eukaryotic cells)

IV. Chemistry of Life
 A. Basic general chemistry
 B. Macromolecules
 1. Carbohydrates
 2. Lipids
 3. Proteins
 4. Nucleic Acids
 C. Enzymes and energy
 D. Metabolism

V. Cell Anatomy and Physiology
 A. Cell membrane and transport mechanisms
 B. Organelle structure and function
 1. Nucleus
 2. Ribosomes and protein synthesis (transcription and translation)
 3. Endomembrane system
 4. Mitochondria and cellular respiration
 5. Cytoskeleton

VI. Cellular Reproduction
 A. Cell cycle
 B. DNA replication
 C. Mitosis
 D. Meiosis

VII. Patterns of Inheritance
 A. Molecular Biology
 B. Mendelian Genetics

VIII. Human Tissues
 A. Epithelium
 B. Connective tissue
 C. Muscular tissue
 D. Nervous tissue

IX. Embryonic Development (Optional)
 A. Fertilization
 B. Blastulation
 C. Gastrulation
Office Hours: My office is in the 0-2 building in room 213. My office hours are from 1-2pm Monday and Wednesday, and 9 to 10am Tuesday and Thursday. My phone # is 206-7670, and my email address is jdelarosa@pima.edu.

Exams: There will be 4 Exams. There will be no opportunity to make-up an exam unless the instructor notified in advance, and the reason is valid and verifiable.

Extra Credit: There will be no extra credit assignments for this course.

Attendance: Class attendance is mandatory. Students who miss the first three classes without notifying the instructor in advance will be dropped from the roster. Students will have 5 points deducted for the first laboratory missed, then 10 points for the second. Twenty points will be deducted for each lab missed thereafter. Points will not be deducted if the laboratory is made up (which usually is not possible).

Withdrawal: The absolute last day to withdraw from the class is November 7th. If a student fails to attend class, or fails to withdraw herself/himself from the course, the student will be issued the grade earned based on the number of points the student has accumulated and the total number of possible points for the course (i.e. overall percentage).

Incompletes: An incomplete will only be given if a student has completed ten weeks of this course, has a “C” or better grade, has a valid and verifiable excuse for not being able to finish the course, and has requested an “incomplete” prior to the end of the semester.

Ethics: Breaches in scholastic ethics, such as cheating on an exam, will be dealt with severely. Students caught cheating, or attempting to cheat, on an exam will have a “zero” recorded for that exam.

Plagiarism: If plagiarism is suspected, you will be called in to discuss your writing with the instructor. Any student using the direct words of others (be they students or some source) will be penalized with a zero for that assignment.

Cell phones must be on vibrate and all emergency calls must be taken outside the classroom. There is no texting during lecture, and laptops must be off during lecture.
BIO 156 Course Objectives

- Perform activities to demonstrate improvement in the general education goals of communication and critical thinking.
- Demonstrate biology study skills necessary for anatomy and physiology.

1. Exams
 1.1 The first three exams in this class are worth between 100 and 200 points each, and the last exam, which is a semi-cumulative final is worth 300 to 400 points.
 1.2 These exams will be given in class before the laboratory that day.
 1.3 They will cover material from lecture, lab, and reading assignments.
 1.4 Exam questions will come from lecture or in-class material, and the remainder will come from the reading assignment questions.
 1.5 There will be no make-up exams, unless the instructor is notified in advance and there is a valid and verifiable reason. Furthermore, the reason for missing the exam must be of an urgent nature. Not having enough time to study is not a valid excuse for not taking an exam.
 1.6 The last exam (Exam 4) is a Semi-cumulative Final, which means questions will be derived from any new material and material found on the first three exams (although question format may change). This exam is worth 300 to 400 points.

2. In-Class Assignments (ICA)
 2.1 These will include a variety of assignments including Critical Thinking Quizzes, construction of flow charts, writing assignments, and others.
 2.2 They will come unannounced during class.
 2.3 There will be no opportunity to make these up, regardless of excuse.
 2.4 Total points have not been determined, but may be as high as 200 points.

3. Laboratory
 3.1 Students will have 5 points deducted for the first laboratory missed, then 10 points for the second. Twenty points will be deducted for each lab missed thereafter. This will take place regardless of whether the lab itself was worth any points or not. Points will not be deducted if the laboratory is made up (which may not always be possible).

 There are no laboratory make-ups.

Tissue practical exam
You will be asked to identify tissues using a microscope and paper images, and be able to list their function and locations in the body.

Laboratory Final, 100 points. Open Book / Open Notes
4. **Student Power Point Presentation (75 points possible per student)**

 Criteria For Acceptance by Instructor
 4.1 Students will work in groups of 2-3.
 4.2 **Student will make an oral presentation about a topic related to biology (a minimum of 7 to 10 minutes per student, and not to exceed 13 minutes) using PowerPoint.**
 4.3 Students will sign up for a specific day to do the oral presentations, which must be done to receive points.
 4.4 Students must obtain instructor approval for the topic.

 Student Power Point presentation grading rubric

 i. *Organization and clarity of a written one page summary on the part of the presentation you worked on (to be done by each student, 10 points), and the name and URLs of the web sites used by each student to complete their section of the presentation (5 points) 15 points total*

 ii. *The class period before the presentation students are to give the instructor an electronic copy of the PowerPoint slides and the written summary: 10 points*

 iii. *Use of a minimum of 3 appropriate reference sources: 10 points*

 iv. *Organization of the oral presentation (not to be read directly from notes or Power Point slides): 40 points*

 3.7 This assignment is worth 75 points per student. Students must complete both the written and oral part of this assignment to get any credit.

Any student who does not give a Power Point presentation and/or take the Laboratory Final, and has a grade of “C” or better, up to that point, will be issued an INCOMPLETE for the class grade.
5. **Grades**
The final grade for the course will be determined by the percentage of total points earned by each student.

- 90% to 100% = A (SUPERIOR)
- 80% to 91% = B (Above Average)
- 70% to 79% = C (Average)
- 60% to 69% = D (Below Average)
- <60% = F (Failure)

BIO 156 Lecture Timeline

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-22</td>
<td>Introduction Principles of Science</td>
</tr>
<tr>
<td></td>
<td>A. Scientific Process and Scientific Experimentation</td>
</tr>
<tr>
<td></td>
<td>B. Analyzing and Reporting Results</td>
</tr>
<tr>
<td></td>
<td>C. Scientific Measurement and Lab Techniques</td>
</tr>
<tr>
<td>8-27</td>
<td>Chemistry and Biological Molecules</td>
</tr>
<tr>
<td>9-03</td>
<td>Biological Molecules</td>
</tr>
<tr>
<td></td>
<td>Macromolecules</td>
</tr>
<tr>
<td></td>
<td>1. Carbohydrates</td>
</tr>
<tr>
<td></td>
<td>2. Lipids</td>
</tr>
<tr>
<td></td>
<td>3. Proteins</td>
</tr>
<tr>
<td></td>
<td>4. Nucleic Acids</td>
</tr>
<tr>
<td>9-10</td>
<td>Monday Labor Day</td>
</tr>
<tr>
<td>9-17</td>
<td>Tissues</td>
</tr>
<tr>
<td></td>
<td>A. Epithelium</td>
</tr>
<tr>
<td></td>
<td>B. Connective Tissue</td>
</tr>
<tr>
<td></td>
<td>C. Muscular Tissue</td>
</tr>
<tr>
<td></td>
<td>D. Nervous Tissue</td>
</tr>
<tr>
<td>9-24</td>
<td>Tissues and Membrane Transport</td>
</tr>
</tbody>
</table>
10-01 Enzyme and Metabolism

10-08 Enzyme and Metabolism

10-15 Molecular Genetics, Molecular Biology, and Protein Synthesis

10-22 Mitosis and Meiosis

10-29 Mitosis and Meiosis

11-05 Patterns of Inheritances
 Mendelian Genetics
 Student Presentations

11-12 Monday Nov 12 Veteran’s Day
 Signal Transduction & cancer

11-19 Student Presentations
 Thanksgiving Holiday 22nd to 25th

11-26 Student Presentations

Embryonic Development (Optional)
 Fertilization
 Blastulation
 Gastrulation

12-03 Semi-cumulative Final
 Written Lab Final

12-10 Grades
 This schedule may change at the discretion of the instructor.

Required Materials
* Safety goggles and closed-toe shoes are required for all lab activities that involve use of any chemicals other than water, glassware or hotplates/Bunsen burners. You should purchase your own safety goggles.
* Lecture outlines in PowerPoint will be available on the class website prior to class
ADA Compliance Statement

Pima Community College is committed to providing accommodations for qualified individuals with disabilities in a timely and effective manner. To request a reasonable accommodation, students must be registered with the campus Disabled Student Resources (DSR) office. Accommodations will be made based on eligibility determined by Disabled Student Resources. Services can be requested at any time during the semester. Requesting services well in advance will help to ensure that resources are available when needed. Please contact a DSR office at 206-6688 or DSRhelp@pima.edu.

Class Conduct

- Refer to the Student Code of Conduct for additional requirements relating to student behavior.
- Because of insurance limitations, non-registered visitors are not allowed at class sessions or on field trips.
- Possession of drugs, alcohol or firearms on college property is illegal.
- Eating, drinking, smoking and soliciting are not allowed in classrooms.
- Computers will not be used for inappropriate or illegal uses.
- Telephones, pagers and other electronic devices that distract students are not allowed in classrooms. If you have a legitimate need to receive a call during class hours (e.g., a sick child), discuss this with me before class.
- Students creating disturbances that interfere with the conduct of the class or the learning of others, violations of the Student Code of Conduct, will be referred to the Division Dean and/or the Dean of Students.
- Disruptive behavior will not be tolerated and can be cause for being dropped from the class. Disruptive behavior is defined as behavior that is disruptive to the learning process and outside normal behavior parameters. See the Student Code of Conduct for particulars, but examples of disruptive behavior are inappropriate talking, arriving late or leaving early, sleeping or doing other class work in class.” Do not carry on private conversations during lecture.

Academic Integrity

Violation of any of the following will result in a zero for that assignment

Pima Community College considers violations of scholastic ethics, including plagiarism, as serious offenses, which may result in failure of an assignment, the course, or possible expulsion.

→ Unintentional plagiarism is the most frequent breach of the Code of Conduct made by students. A student will be considered in violation of this component of the Code of Conduct if (s)he:

→ Represents the work of others as his/her own

→ Uses or obtains unauthorized assistance in any academic work

→ Give unauthorized assistance to another student.

 NOTE: Without my expressed consent, it is not acceptable to turn in a lab report if you were not present when the data were collected. Also, though it is fine to discuss your homework or labs with your colleagues, it is not okay to turn in identically or nearly identically phrased assignments.

→ All work done for this class must be your own. For assignments, you may use work from books and other materials if properly cited. Copying from any source without proper reference is considered plagiarism.