1.) DATE: 3/12/14 2.) COMMUNITY COLLEGE: Yavapai College

3.) COURSE PROPOSED: Prefix: ENV Number: 105 Title: ENVIRONMENTAL BIOLOGY Credits: 4

 CROSS LISTED WITH: Prefix: Number: ; Prefix: Number: ; Prefix: Number:
 Prefix: Number: ; Prefix: Number: ; Prefix: Number:

4.) COMMUNITY COLLEGE INITIATOR: ASU TRANSFER SYSTEMS DEVELOPMENT PHONE: 4807272424 FAX:

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable) are not eligible for the General Studies Program.

MANDATORY REVIEW:

☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:
Core Areas: Natural Sciences (SG) Awareness Areas: Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) DOCUMENTATION REQUIRED
☐ Course Description
☐ Course Syllabus
☐ Criteria Checklist for the area
☐ Table of Contents from the textbook required and/or list of required readings/books
☐ Description of how course meets criteria as stated in item 6.

8.) THIS COURSE CURRENTLY TRANSFERS TO ASU AS:
☐ DECBIO prefix
☐ Elective

Current General Studies designation(s): NONE

Effective date: 2014 Fall Course Equivalency Guide

Is this a multi-section course? ☐ yes ☐ no

Is it governed by a common syllabus? ☐ yes ☐ no

Chair/Director: Chair/Director Signature:

AGSC Action: Date action taken: ☐ Approved ☐ Disapproved

Effective Date:
Rationale and Objectives

In a relatively short time in the history of civilized societies, humankind moved from what was essentially an agrarian population into an industrial age, which in recent years has been profoundly shaped by such scientific and technological advances as genetic engineering, the computer, and space exploration. Our history of irrepresible ingenuity makes a compelling case for a future that will be even more profoundly influenced by science and technology. It is imperative that we react expeditiously and effectively to the problems and the promise that these advances create. We must ensure that technological change is directed to the benefit of society and that it will promote human dignity and values. Success in achieving this goal will depend upon the insight and knowledge of political and public opinion leaders, and the scientific enlightenment of educated citizens. To a significant degree, the ability of these individuals to understand the nature of the issues and the alternative courses of action will be determined by the quality of science presented at the nation's institutions of higher learning.

The recommendation of at least one laboratory course that includes a substantial introduction to the fundamental behavior of matter and energy in physical or biological systems derives from a number of considerations. First, all physical and biological phenomena have at their roots the fundamental principles governing the behavior of matter and energy. These principles have been shown over a period of time to be a value in reliably predicting and rationalizing a broad range of phenomena. Unless the lines to these roots are established, our understanding of the broader range of the sciences, and other fields upon which these sciences impinge, will be impaired. Second, because these fundamental principles have been experimentally established beyond reasonable doubt, the essentials of the scientific method can be clearly and coherently revealed by their study. Third, the study of the behavior of matter and energy illustrates the usefulness of mathematics in precisely describing and rationalizing certain physical phenomena, and the expressiveness of mathematical equation.

10/1989
Proposer: Please complete the following sections and attach appropriate documentation.

ASU--[SQ] CRITERIA

I. - FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>

NOTE: CRITERIA FOR [SG] COURSES BEGIN ON PAGE 4.
III. [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Includes a college-level treatment of some of the following topics (check all that apply below):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Atomic and molecular structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Electrical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Chemical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Elementary thermodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Electromagnetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Dynamics and mechanics</td>
</tr>
</tbody>
</table>

[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SG] CRITERIA

I. FOR ALL GENERAL [SG] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>1. Course emphasizes the mastery of basic scientific principles and concepts. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>2. Addresses knowledge of scientific method. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>4. Addresses potential for uncertainty in scientific inquiry. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>5. Illustrates the usefulness of mathematics in scientific description and reasoning. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity. Course syllabus and outline</td>
</tr>
</tbody>
</table>

II. AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>A. Stresses understanding of the nature of basic scientific issues. Course syllabus and outline</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities. Course syllabus and outline</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry. Course syllabus and outline</td>
</tr>
<tr>
<td>[SG] REQUIREMENTS CANNOT BE MET BY COURSES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Presenting a qualitative survey of a discipline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focusing on the impact of science on social, economic, or environmental issues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Prefix</td>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ENV</td>
<td>105</td>
<td>ENVIRONMENTAL BIOLOGY</td>
</tr>
</tbody>
</table>

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I a-d: Course emphasizes mastery of basic scientific principles, addresses knowledge of scientific method, includes coverage of method of scientific inquiry, addresses potential for uncertainty in scientific inquiry.</td>
<td>This course describes and applies ecological principles of how the earth functions and the human impact on the environment as well as evaluates the scientific basis of environmental issues. Explores factors affecting global distribution of climate and interaction of individuals and population with the physical environment.</td>
<td>Unit 1 of course syllabus and outline</td>
</tr>
<tr>
<td>I e-h: Illustrates usefulness of mathematics in scientific description and reasoning. Includes weekly laboratory and/or field sessions; submits written reports of laboratory experiments. Course is intro level.</td>
<td>Course analyzes potential solution to current environmental issues, provides skills for life-long learning, critical examination relative to environmental biology. Laboratories and field sessions to stimulate learning through hands-on experience using data interpretation and statistics.</td>
<td>Unit 2 of course syllabus and outline</td>
</tr>
<tr>
<td>II a and b: Stresses understanding of the nature of basic scientific issues; develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
<td>Focus placed on population variation, adaptations, and natural selections. Examines energy flow through communities and ecosystems as well as the basic mechanisms and conditions affecting populations with respect to evolution and natural selection.</td>
<td>Unit 3 of course syllabus and outline</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL BIOLOGY SYLLABUS (BIO 105/ENV 105)
Spring 2013 (CRNs 16077, 16078)
Joanne Oellers

Welcome to Environmental Biology. Environmental Biology is an interdisciplinary study investigating how nature works and how its components are interconnected. Based on an understanding of ecological concepts and principles, you will examine and analyze the relationships among populations, natural resources, land use, agriculture, biodiversity, industrialization, and more. There may be surprises in store for you.

Keep this syllabus at hand. It is a detailed reference for questions that arise.

INSTRUCTOR INFORMATION

Joanne Oellers. Feel free to address me as Joanne.
Office Location & Phone: Building M, Room 211, 928.634.6578
Email: joanne.oellers@yc.edu
Skype: joanne.oellers

Office Hours & Locations:
Mondays 11:15 a.m. to 12:45 p.m.
Wednesdays 11:15 a.m. to 12:45 p.m.
Tuesdays & Thursdays 9:45 a.m. to 10:45 a.m.
Other times by appointment. Just ask.

CLASSROOM & MEETINGS
Building L, Room 105
Tuesdays & Thursdays 11 a.m. to 1:45 p.m.

GENERAL COURSE INFORMATION

BIO 105/ENV 105 Environmental Biology (4). Introduction to ecological systems, natural resources, and applications to environmental issues. Includes population, community, and ecosystem analysis. Emphasis on field, laboratory, and writing activities. Prerequisite, reading proficiency. Credits 4.

BIO 105 fulfills 4 credits of the Physical and Biological Sciences requirement of the Arizona General Education Curriculum.
Our goal is to study the processes of the natural world. In developing a greater understanding and appreciation of the environment, we will be able make logical decisions on how to live as part of the natural world.

myYC Portal

All Yavapai College students will be required to use the myYC portal. The portal includes:

- Links to your College email
- Your degree audit system, DegreeWorks. Use to track your academic progress.
- Registration information and your schedule
- Links to view transcripts, update information, and more!

Student Email

Yavapai College requires enrolled students to have an email address for official College communications can be sent. This is your “scholar” address, accessed by clicking on the email icon in your myYC portal. Please check your Yavapai College email account for college-related information and class information and announcements at least every other day. Students may elect to forward their YC email to an address different from their scholar account. See instructions on email info website. Click here for assistance.

Safety in the Classroom

Our classroom is also a laboratory and holds equipment, glassware, chemicals, and tools that are potential hazards for humans. So for your safety:

1. Wear shoes that cover your toes and heels during every class. I suggest you keep a pair of closed shoes in your car or backpack. You will get used to this the first week, and then it will likely become second nature.
2. Refrain from eating in class. Covered water bottles are allowed.
3. Look forward to formal safety training during the first or second week.

Textbook

Essentials of Ecology, G. Tyler Miller, Scott Spoolman, 6th edition. ISBN: 978053873536. The textbook companion website at http://tinyurl.com/az54z2g contains many resources useful to you, including Chapter Summaries, Flashcards, Weblinks, What You Can Do resources, and links to related readings. Please note many links are locked for instructor use only.

Internet Access to the Course

Even though we meet in the classroom, I provide announcements, materials, and activities via Blackboard. You must become Blackboard-savvy, so begin exploring. You will find lots of resources and links to important site, including Symbiosis our course website.

Important College-wide Dates

- Last day to add: Sunday, January 20
- Last day to drop: Sunday, January 20
- Last day for 100% refund: Sunday, January 20
- Martin Luther King Holiday: Monday, January 21
Last day for student-initiated withdrawal: Sunday, March 10
Spring Break: Monday to Friday, March 10 to 15
Spring regular semester ends: Monday, May 6

SOME CHOICES OF SUCCESSFUL STUDENTS

- Develop personal responsibility. See yourself as the primary force in outcomes and experiences.
- Become self-motivated. Discover personally meaningful goals to overcome obstacles.
- Practice self-management. Plan and take purposeful actions in pursuit of goals.
- Build mutually supportive relationships that help yourself and others to achieve goals.
- Employ behaviors, beliefs, and attitudes that keep you on course.
- Find value in every experience.
- Manage your emotions in support of goals.
- Find the wonder in the nature and seek understanding outside the classroom.
- See yourself as capable of achieving your dreams and goals.

ASSESSMENT

Class Progress
Simply select Grades and Email on the left sidebar of your Blackboard Announcements screen. My Grades displays your point totals and the points possible in the course. Simply divide your earned points by the total course points at a particular point to calculate your percentage grade.

Be alert to your scores. Check frequently! If you uncover any discrepancies, notify me ASAP, and please let me know if you are struggling in any way. We can work together to find a solution.

Assessments & Grading Criteria

Labs	12 x 10	120
Lab Notebooks (formal presentation)	3 x 15	45
Quizzes	10 x 10	100
Unit Papers (on blog)	3 x 20	60 (three Unit Papers)
Exams	3 x 100	300

625 points total

All assessments are equally weighted. Here is the performance and grading scale used to determine your final grade:

A = 90 - 100% Superior, extraordinary scholarship outstanding performance, excellent comprehension of subject material and above-average written/oral expression

B = 80 - 89% Above-average work, good conceptual understanding, good expression, perhaps slightly lacking in organization and/or mechanics

C = 70 - 79% Acceptable work for this level of college

D = 60 - 69% Below standard of acceptable college work
F = < 60% Failure to meet minimal requirement for passing course

To do well, expect to spend at least five hours a week on the course outside of class.

A failing grade may reflect lack of attendance, effort, or points, or result from non-compliance with course policies, including neglecting to withdraw oneself from class before the student-initiated withdrawal deadline, March 10.

It is imperative that you communicate with me about your attendance. This simple act can make a big difference for you. I will judge absences excused or unexcused, and prior to March 10, if you accumulate two unexcused absences, I will drop you from the class. After this date, if you stop attending class, I will not drop you. You will remain on the roster and likely receive a failing grade for the class. It is up to you to use your best judgment as March 10 nears, so you can achieve the best outcome for yourself.

COURSE COMPONENT DETAILS

Assignment details can be found on Monday afternoons in Weekly Folders. To keep up with the action, visit Blackboard and read your YC email at least every other day.

Reading Assignments—Complete Before Class
Please complete any reading assignments as directed before class, to prepare for discussions and activities.

Labs & Lab Notebooks
The laboratory exercises take many forms, group work, mini-teaching presentations, discussions, problem solving, and analysis of data to name a few. Lab time is collaborative, so I expect to see you sharing results, but answers, drawings, and written discussions must be your own and submitted separately and in your unique style, even if you work in a group.

Prior to a lab period, please read and print the lab exercise provided you in your Weekly Folder. Completed labs are due the week after we complete the in-class portion of the exercise; no labs will be accepted after then. On exam days (three times during the semester), you will submit a laboratory notebook containing labs from the unit you just completed. This notebook is a formal presentation of your work and should reflect your best organization, neatness, and accuracy.

To be accepted and considered for evaluation, your laboratory notebook must:
1. Include a cover page indicating your name and course name
2. Be placed in a folder or binder separate from class notes
3. Be neat and legible
4. Have a table of contents that refers to tabs placed in front of each laboratory exercise

I will not grade notebooks missing any of the requirements above. No extensions granted.
Quizzes
You will take open book quizzes in Blackboard. They include multiple choice and short answer questions and are due on certain Sundays by midnight. Study the Chapter Summaries and Flashcards on the textbook website and section Concepts, Review, and Critical Thinking at the ends of chapters. See dates in your Schedule and Weekly Folders.

Blogs
You will post Unit Papers to a personal blog. A blog is really a simple web site. Please develop a blog or have an established blog ready for class by the end of the first week of class. Your blog will be public, so you may use an alias for your blog name, but I must know who you are and certainly do share your identity with your classmates. I will collect them and share in a blogroll list. If you have never blogged, close attention to instructions in a forthcoming "user's manual" ensures success!

Feel a little uncomfortable about creating and using a public blog? Please let me know, so we can talk it over.

- Unit Papers
 - The purpose of the unit paper is to give you another opportunity to demonstrate your understanding of the unit material by focusing on a topic of interest to you, reflecting on your experience with the content, and commenting on how you learned the various topics. Separate details will be available soon.

Exams
Each exam includes multiple choice questions, vocabulary matching, and short answer questions. Study the Chapter Summaries and Flashcards on the textbook website and section Concepts, Review, and Critical Thinking at the ends of chapters. See dates in your Schedule and Weekly Folders.
This material provides you a good basis for understanding the material for quizzes and exams. I provide a study guide for each exam and you may bring to the exam a 3x5 card with notes on both sides

CONTENT AND OUTCOMES

Course Content
1. Interactions of individual organisms with the physical environment
2. Interactions of individuals and populations with the biological environment
3. Energy flow through communities and ecosystems
4. Factors affecting global distribution of climate
5. Characteristics of the major biomes
6. Interaction between humans and the environment
7. Field data collection techniques
8. Recording data and observations
9. Interpretation of data
10. Elementary statistics
11. Biogeochemical cycles
12. Population variation, adaptations, and natural selection
13. Island biogeography and conservation applications

Learning Outcomes. Numbers in parentheses match the course content, above.
1. Describe the adaptations of organisms to the physical environment. (1)
2. Describe intra and inter specific competition, and other types of interactions between individuals and populations. (2)
3. Describe and graph exponential and logistic population growth. (2)
4. Describe the flow of energy through ecosystems emphasizing trophic levels and food webs. (3)
5. Describe the processes generating climatic zones on the Earth. (4)
6. Correlate biomes with climate patterns. (4, 5)
7. List the physical and biotic characteristics of the major biomes. (5)
8. Describe interactions between hunter-gatherer, pastoral, agrarian, and industrial societies and the environment. (6)
9. Collect quantifiable data using various field methods. (7, 8)
10. Analyze data using graphical and statistical methods. (9, 10)
11. Describe the major biogeochemical cycles including water, carbon, and nitrogen. (11)
12. Describe the basic mechanisms and conditions affecting populations with respect to evolution and natural selection. (12)
13. Describe the influence of area, distance, and other factors in predicting species diversity. (13)

TECHNOLOGY

Even while meeting in person, technology is part of our regular course operation. You must be comfortable with normal technological operations as outlined in YC Orientation to Online Learning.

I can provide you with some help, but I will not be familiar with your computer and might not offer the best advice. Sometimes a problem is system-related, and then I feel really helpless. If you inform me of a technological glitch, I will do my best to find help for you. Your best bet: contact the Help Desk (see YC Resources on Blackboard side bar).

INSTITUTION & INSTRUCTOR POLICIES

Instructor Response Time
I will do my best to respond to emails and phone calls within 24 hours and correct assignments within 72 hours after the due date. I will likely not respond on weekends. If I have unforeseen circumstances preventing me from holding to this, I will email the class.

Use of Proper Sentences
Please submit work in proper sentences, where appropriate.

Attendance, Withdrawal & Missed or Late Assignments
Students are expected attend all classes ready to actively participate. However, an absence will be excused if you have a compelling personal reason, such as a dire illness or family emergency, preventing you from attending class. In the event of an excused absence, you can make up the activities you missed. I would appreciate knowing if you anticipate missing a class.

Talk to me about any concerns you have about the class, your attendance, or progress. I want to help you succeed and might have options to offer you. Please note:

- You must be present the first class meeting, or have communicated with me about your absence, or you will be withdrawn from the class.
- If you are absent twice by March 10, and you have not responded to my calls or emails, I will assume you no longer wish to be part of the class, and you will be withdrawn.
- It is your responsibility to assess your progress regularly and make the best decision for yourself about continuing in class. To officially withdraw from a course, you must submit a completed Yavapai College Change of Class Enrollment Form by March 10 to the Registration Office.
- If you remain in the class after March 10, you will likely receive, at the conclusion of the semester, the letter grade you earned by that time (this could be an F), not a withdrawal.
Start assignments well before deadlines. You will forfeit 10% of the points for each day late. Work submitted later than one week beyond the due date will not be accepted.

Weather and Other Unforeseen Events
Extreme winter weather or other conditions may prohibit travel to the College. Subscribing to text alerts and checking for updates on the Yavapai College Home Page keeps you up to date on situations potentially affecting you, such as cancellation of classes. I drive from Prescott, and weather or road conditions might create an obstacle for me. I will use email, Blackboard announcements, and notes on doors to communicate with you about delays or class cancellations.

Student Code of Conduct
The intended purpose of Yavapai College’s Student Code of Conduct is to maintain order and stability and preserve all educational functions by setting forth standards of behavior and promoting respect for the rights of all individuals. Respect for the rights of others and for the College and its property are fundamental expectations for every student. The Student Code of Conduct outlines behavioral expectations and explains the process for responding to allegations of student misconduct. It is your responsibility to read and understand this document.

Academic integrity
Honesty in academic work is a central element of the learning environment. The presentation of another individual’s work as one’s own or the act of seeking unfair academic advantage through cheating, plagiarism, or other dishonest means are violations of YC’s Student Code of Conduct and a violation of academic integrity. If you are not sure what this means ask me or refer to definitions of plagiarism, cheating, and violation of copyright and penalties for violation in the Code of Conduct.

Plagiarism or violation of academic honesty in the preparation of class assignments will earn you a zero for that assignment and will likely result in a failing grade for the semester. For example, if I even suspect you of cheating, because you are texting during an exam, you will earn a zero for your exam.

Internet Downloading
Yavapai College technological equipment and resources must be used in accordance with the YC Copyright Guidelines. Use of College equipment and resources to illegally copy, download, access, print, or store copyrighted material such as music or movies or pornographic material is strictly prohibited. Users found to violate this policy will have the privileges to use Yavapai College technological equipment and resources revoked.

Classroom Etiquette and Neticuette
Students are expected to respond and write in a professional and appropriate manner when activities are assigned to create scenarios, discuss opinions, present on a selected subject, or post to the web. Inappropriate language or objectionable material will not be tolerated and could result in disciplinary measures and/or a failing grade for the class.

Just as courteous behavior is necessary in person, it is necessary online. Type your last name and “BIO 105” in the subject line. Compose emails carefully and check for wording that could be misinterpreted and change to words with a clearer meaning. Include a greeting (“Hello”, “Good Morning”), Thank the person for help or information and sign with your name as it appears on YC records.

All electronic devices must be placed in a non-audible mode while in classrooms, computer labs, the library, the learning center, and testing areas. However, there may be times we use our phones for research or other activities, and having the sound on is okay.
Phone internet use during class has the potential to enhance our learning, but please do not make biology class time social time with those outside class. I will ask you to put your device away if I suspect you are. Absolutely under no circumstances, may you have access to electronic devices during exams.

HELP

Library services are available at Prescott and Verde YC campuses. Both libraries are members of a countywide library network, which provides access to a wide-range of information and resources at libraries throughout Yavapai County. The YC computers are fully-equipped for course requirements.

Learning Resource Centers are available on most campuses. These centers provide a variety of learning support for students including tutoring, adaptive equipment for students with disabilities, computer-assisted instruction, adult basic education, and English as a Second Language classes. For tutoring, call 928.634.6562 (Verde campus) or 928.776.2085 (Prescott campus).

Disability Resources
If you have a disability, including a learning disability, please contact Disability Resources at 928.776.2079 or 928.776.2057 to discuss your disability with a staff member. This will be so that you can arrange accommodations that you need for this class.

Technology Help Desk
928.776.2168 Prescott Campus
928.649.5558 Verde Campus
855.836.3520 Toll-free either campus
BIO 105/ENV 105 SCHEDULE

Please note that lab titles are generalized. This schedule might change. Always check your Announcements, Weekly Organizer, and Weekly Folders for updates.

Field trip destinations and dates will be announced soon. We will visit local sites, including the Verde River and complete our field work within the designated class time.

UNIT 1—SCIENCE & ECOLOGICAL PRINCIPLES

WEEK 1 (1/15, 1/17) Chapter 1 Environmental Problems & Sustainability

Homework:
Read Chapter 1, other as directed, and lab exercise
Use study tools

In class:
Welcome to biology and Chapter 1 topics
1/17 Safety Training, Tragedy of the Commons Lab

WEEK 2 (1/24 Thursday only) Chapter 1 Environmental Problems & Sustainability

No class on 1/22. I have a doctor’s appointment.

Homework:
Read Chapter 1, other as directed
Use study tools
Quiz 1 on Syllabus by midnight 1/27

In class:
Chapter 1 topics

WEEK 3 (1/29, 1/31) Chapter 2 Science, Matter, Energy, and Systems

Homework:
Read Chapter 2, other as directed, and lab exercise
Use study tools

In class:
Chapter 2 topics
1/31 The Cube Lab

WEEK 4 (2/5, 2/7) Chapter 2 Science, Matter, Energy, and Systems
Homework:
Read Chapter 2, other as directed, and lab exercise
Use study tools
Quiz 2 Chapter 2 by midnight 2/10

In class:
Chapter 2 topics

Week 5 (2/12, 2/14) Chapter 3 Ecosystems
Homework:
Read Chapter 3, other as directed, and lab exercise
Use study tools
Quiz 3 Chapter 3 part 1 by midnight 2/17

In class:
Chapter 3 topics
2/14 Cabbage & Assessing Water Quality (online?) Lab

Week 6 (2/19, 2/21) Chapter 3 Ecosystems
Homework:
Read Chapter 3, other as directed, and lab exercise
Use study tools
Quiz 4 Chapter 3 part 2 by midnight 2/24

In class:
Chapter 3 topics
2/21 Matter Cycling in Ecosystems Lab

UNIT 2—EVOLUTION, BIODIVERSITY & POPULATIONS

WEEK 7 (2/26, 2/28) Chapter 4 Evolution
Homework:
Read Chapter 4, other as directed, and lab exercise
Use study tools
Quiz 5 Chapter 4 by midnight 3/3

In class:
Chapter 4 topics
2/28 Island Lab

2/28 Exam 1
Due 2/28:
Lab Notebook 1
Unit Paper 1 by midnight

WEEK 8 (3/5, 3/7) Chapter 5 Species Interactions & Population Control

Homework:
Read Chapter 5 other as directed, and lab exercise
Use study tools
Quiz 6 Chapter 5 by midnight 3/10

In class:
Chapter, other as directed, and lab exercise
3/7 Predator-Prey Interactions Lab

Spring Break March 11-15

WEEK 9 (3/19, 3/21) Chapter 6 The Human Population and Its Impact

Homework:
Read Chapter 6, other as directed, and lab exercise
Use study tools
Quiz 7 Chapter 6 by midnight 3/24

In class:
Chapter 6 topics
3/21 Population Clock &/or Cemetery Lab Field trip

WEEK 10 (3/26, 3/28) Chapter 7 Climate

Homework:
Read Chapter 7, other as directed, and lab exercise
Quiz 8 Chapter 7 by midnight 3/31

In class:
Chapter 7 topics
3/28 Climate Lab

WEEK 11 (4/2, 4/4) Chapter 8 Aquatic Biodiversity

Homework:
Read Chapter 8, other as directed, and lab exercise
Use study tools
Quiz 9 Chapter 8 by midnight 4/7
In class:
Chapter 8 topics
UNIT 3 –SUSTAINING BIODIVERSITY

WEEK 12 (4/9, 4/11) Chapter 9 Sustaining Biodiversity: The Species Approach

Homework:
Read Chapter 9, other as directed
Use study tools

In class:
4/9 Chapter 9, other as directed,
4/11 Exam 2

Due 4/11:
Lab Notebook 2
Unit Paper 2 by midnight

WEEK 13 (4/16, 4/18) Chapter 9 Sustaining Biodiversity: The Species Approach

Homework:
Read Chapter 9, other as directed, and lab exercise
Use study tools

In class:
Chapter 9 topics
4/18 Comprehensive Paradigm of Wildlife Management Lab

Homework:
Read Chapter 10, other as directed, and lab exercise
Use study tools
Quiz 10 Chapter 14 by midnight 4/28

In class:
Chapter 10 topics
4/25 Wildlife Corridors Lab

WEEK 15 (4/30, 5/2) Wrap Up

In class:
Wrap up
5/2 Exam 3

Due 5/2:
Lab Notebook 3
Unit Paper 3 by midnight

Thursday 5/2 is our last day of class.