1.) DATE: 2/26/2014 2.) COMMUNITY COLLEGE: Pima Community College

3.) COURSE PROPOSED: Prefix: GLG Number: 140 Title: INTRO TO OCEANOGRAPHY Credits: 4

 CROSS LISTED WITH: Prefix: Number: ; Prefix: Number: ; Prefix: Number: ;
 Prefix: Number: ; Prefix: Number: ; Prefix: Number:

4.) COMMUNITY COLLEGE INITIATOR: ASU Transfer Systems Development PHONE: 7-2424 FAX:

ELIGIBILITY: Courses must have a current Course Equivalency Guide (CEG) evaluation. Courses evaluated as NT (non-transferable are not eligible for the General Studies Program.

MANDATORY REVIEW:

☐ The above specified course is undergoing Mandatory Review for the following Core or Awareness Area (only one area is permitted; if a course meets more than one Core or Awareness Area, please submit a separate Mandatory Review Cover Form for each Area).

POLICY: The General Studies Council (GSC-T) Policies and Procedures requires the review of previously approved community college courses every five years, to verify that they continue to meet the requirements of Core or Awareness Areas already assigned to these courses. This review is also necessary as the General Studies program evolves.

AREA(S) PROPOSED COURSE WILL SERVE: A course may be proposed for more than one core or awareness area. Although a course may satisfy a core area requirement and an awareness area requirement concurrently, a course may not be used to satisfy requirements in two core or awareness areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirements and the major program of study.

5.) PLEASE SELECT EITHER A CORE AREA OR AN AWARENESS AREA:

 Core Areas: Natural Sciences (SQ) Awareness Areas: Select awareness area...

6.) On a separate sheet, please provide a description of how the course meets the specific criteria in the area for which the course is being proposed.

7.) DOCUMENTATION REQUIRED

☒ Course Description
☒ Course Syllabus
☒ Criteria Checklist for the area
☒ Table of Contents from the textbook required and/or list of required readings/books
☒ Description of how course meets criteria as stated in item 6.

8.) THIS COURSE CURRENTLY TRANSFERS TO ASU AS:

☒ DEC GPH prefix
☐ Elective

Current General Studies designation(s): NONE

Effective date: 2014 Fall Course Equivalency Guide

Is this a multi-section course? ☐ yes ☐ no

Is it governed by a common syllabus? ☐ yes ☐ no

Chair/Director: Chair/Director Signature:

AGSC Action: Date action taken: ☐ Approved ☐ Disapproved

Effective Date:
Arizona State University Criteria Checklist for

NATURAL SCIENCES [SQ/SG]

Rationale and Objectives

In a relatively short time in the history of civilized societies, humankind moved from what was essentially an agrarian population into an industrial age, which in recent years has been profoundly shaped by such scientific and technological advances as genetic engineering, the computer, and space exploration. Our history of irrepressible ingenuity makes a compelling case for a future that will be even more profoundly influenced by science and technology. It is imperative that we react expeditiously and effectively to the problems and the promise that these advances create. We must ensure that technological change is directed to the benefit of society and that it will promote human dignity and values. Success in achieving this goal will depend upon the insight and knowledge of political and public opinion leaders, and the scientific enlightenment of educated citizens. To a significant degree, the ability of these individuals to understand the nature of the issues and the alternative courses of action will be determined by the quality of science presented at the nation's institutions of higher learning.

The recommendation of at least one laboratory course that includes a substantial introduction to the fundamental behavior of matter and energy in physical or biological systems derives from a number of considerations. First, all physical and biological phenomena have at their roots the fundamental principles governing the behavior of matter and energy. These principles have been shown over a period of time to be a value in reliably predicting and rationalizing a broad range of phenomena. Unless the lines to these roots are established, our understanding of the broader range of the sciences, and other fields upon which these sciences impinge, will be impaired. Second, because these fundamental principles have been experimentally established beyond reasonable doubt, the essentials of the scientific method can be clearly and coherently revealed by their study. Third, the study of the behavior of matter and energy illustrates the usefulness of mathematics in precisely describing and rationalizing certain physical phenomena, and the expressiveness of mathematical equation.

10/1989
Proposer: Please complete the following sections and attach appropriate documentation.

ASU--[SQ] CRITERIA

I. - FOR ALL QUANTITATIVE [SQ] NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>A. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>B. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>C. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>D. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>E. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>F. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>G. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>H. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE FOLLOWING ADDITIONAL CRITERIA MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>

NOTE: CRITERIA FOR [SG] COURSES BEGIN ON PAGE 4.
III. - [SQ] COURSES MUST ALSO MEET THESE ADDITIONAL CRITERIA:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Provides a substantial, quantitative introduction to fundamental principles governing behavior of matter and energy, in physical or biological systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Includes a college-level treatment of some of the following topics (check all that apply below):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Atomic and molecular structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Electrical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Chemical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Elementary thermodynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Electromagnetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Dynamics and mechanics</td>
</tr>
</tbody>
</table>

[SQ] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
Proposer: Please complete the following section and attach appropriate documentation.

ASU--[SG] CRITERIA

I. - FOR ALL *GENERAL [SG]* NATURAL SCIENCES CORE AREA COURSES, THE FOLLOWING ARE CRITICAL CRITERIA AND MUST BE MET:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Course emphasizes the mastery of basic scientific principles and concepts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Addresses knowledge of scientific method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Includes coverage of the methods of scientific inquiry that characterize the particular discipline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Addresses potential for uncertainty in scientific inquiry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Illustrates the usefulness of mathematics in scientific description and reasoning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Includes weekly laboratory and/or field sessions that provide hands-on exposure to scientific phenomena and methodology in the discipline, and enhance the learning of course material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Students submit written reports of laboratory experiments for constructive evaluation by the instructor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Course is general or introductory in nature, ordinarily at lower-division level; not a course with great depth or specificity.</td>
</tr>
</tbody>
</table>

II. - AT LEAST ONE OF THE ADDITIONAL CRITERIA THAT MUST BE MET WITHIN THE CONTEXT OF THE COURSE:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A. Stresses understanding of the nature of basic scientific issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Develops appreciation of the scope and reality of limitations in scientific capabilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Discusses costs (time, human, financial) and risks of scientific inquiry.</td>
</tr>
</tbody>
</table>
[SG] REQUIREMENTS CANNOT BE MET BY COURSES:

- Presenting a qualitative survey of a discipline.
- Focusing on the impact of science on social, economic, or environmental issues.
- Focusing on a specific or limiting but in-depth theme suitable for upper-division majors.
### Course Prefix	Number	Title	Designation
GLG | 140 | INTRODUCTION TO OCEANOGRAPHY | SQ

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-D. Course emphasizes mastery of basic scientific principles, addresses knowledge of scientific method, includes coverage of methods of scientific inquiry, addresses potential for uncertainty in scientific inquiry.</td>
<td>Course examines scientific method, methods of inquiry pertinent to geology and biology (such as microscopy, mapping, sediment analysis, measurement/analysis of plate tectonics, ocean zones, etc.). Students are expected to utilize steps of scientific method and methods of scientific inquiry in laboratory experiments. Limits of scientific inquiry discussed in lecture/lab.</td>
<td>Page 1 Objectives: 2, 5, Page 1 Outline: IA-IC Page 6 Sample Syllabus: Course schedule. Shows laboratory experiments.</td>
</tr>
<tr>
<td>IE-H. Illustrates usefulness of mathematics in scientific description and reasoning. Includes weekly laboratory; submits written reports of laboratory experiments. Course is intro level.</td>
<td>Course is an Introduction to Oceanography. The course has weekly laboratory sessions that require students to complete and turn in written reports/assignments. Usefulness of math demonstrated through scientific measurements and reasoning.</td>
<td>Page 1 Objectives: 2, 3, 8; demonstrates utility of math in scientific reasoning Page 6 Syllabus: Shows weekly experiments w/ reports due</td>
</tr>
</tbody>
</table>
Course Content Form
PIMA COMMUNITY COLLEGE

Start Term: 201410

GLG 140IN Introduction to Oceanography

Initiator: Noah Fay
Campus: Northwest
Date: 02/07/2012

CEU/Credit Hours: 4.00
Lecture Periods: 3.00
Lab Periods: 3.00

Description:
Introduction to the study of the oceans. Includes scientific measurements, lab techniques, and the scientific method. Also includes introduction to oceanography, geological, chemical, physical, and biological oceanography, and the human presence in the ocean.

Information: IN is the integrated version of the course with the lecture and lab taught simultaneously.

Performance Objectives:
Upon completion of the course, the student will be able to do the following:

1. Perform activities to demonstrate improvement in the general education goals of communication and global awareness.
2. Demonstrate the correct use of a microscope and the ability to measure mass, length, and volume in metrics using appropriate scientific measurement tools.
3. Use the scientific method to design and conduct an experiment.
4. Discuss the history and significance of oceanography.
5. Describe how scientists study the oceans.
6. Discuss the relationship of plate tectonic theory to ocean basins.
7. Compare and contrast marine sediments, their origins, and their relationship to ocean basins.
8. Discuss the role of salinity, density, and dissolved gases in the ocean.
9. Describe and contrast wind-driven ocean currents and thermohaline circulation.
10. Discuss the types and motions of waves in the ocean.
11. Identify the models of and types of tides on Earth.
12. Compare and contrast nearshore environments, such as estuaries and coral reefs, and human impacts on them.
13. Identify the basic biological habitats in the ocean, their associated biota, and their role in ocean productivity.
14. Discuss how humans use and alter the oceans.

Outline:

I. Scientific Measurements, Lab Techniques, and the Scientific Method
 A. Microscopy
 B. Metric measurements
 C. Scientific method

II. Introduction to Oceanography
 A. History and methods of oceanography
 B. Origin of the ocean basins

III. Geological Oceanography
 A. Marine sedimentation
 B. Dynamic shoreline
IV. Chemical Oceanography
 A. Properties of seawater
 B. Salinity, density, and dissolved gases in the ocean

V. Physical Oceanography
 A. Ocean circulation
 B. Waves in the ocean
 C. Tides

VI. Biological Oceanography
 A. Marine ecology
 B. Biological productivity in the ocean
 C. Ocean habitats and their biota

VII. Human Presence in the Ocean
 A. Ocean resources
 B. Pollution
 C. Overfishing
GLG 140: Introduction to Oceanography
Instructor: Dr. Nan Schmidt
Fall 2008 T/Th 8:40-11:20am
CRN 12011; Room SCI (K) 136

Contact Info: Office hours: Tues/Thurs 8:10-8:40am in SCI 136 or by appointment. nan.schmidt@pima.edu, office phone 206-7140, or leave message at Math & Science Office, 206-6031, 2nd floor of the Tortolita Building. Also check the course website on MyPima.

Required: GLG 140 Intro to Oceanography Lab Manual and Notes

Course Description: Introduction to the study of oceans. Includes scientific measurements, lab techniques, and the scientific method, introduction to oceanography, geological, chemical, physical and biological oceanography, and the human presence in the ocean. See http://www.pima.edu/courses/lists and click on Geology to view complete course outline & objectives.

Instructional Delivery: Two connected lecture and lab sessions per week. Most sessions will contain both lecture and lab activities; lab is designed to support and teach content—it is not a separate entity. Exams will cover both lecture and lab content.

Attendance: You are expected to come to class on time and stay for the entire class period.

Acceptable Behavior: You are expected to abide by the College's Student Rights and Responsibilities (http://www.pima.edu/~coadmissions/studresp.htm). Breaches in scholastic ethic (e.g. cheating and plagiarism [see attachment]) will be dealt with severely. You are expected to do your own work, be honest, and not be disruptive or disrespectful of others. Please be courteous in class; turn off cellular phones, beepers, headphones, etc.

Evaluation: In order to determine whether this course is meeting its objectives, a variety of classroom assessment techniques will be used. These may include but are not limited to multiple choice, short answer, or essay tests regarding your comprehension of the material presented in class, group or individual oral reports, discussions, brainstorming, demonstrations of laboratory techniques, and group or individual written reports.

Because this course fulfills a general education requirement, I also will use assessment techniques to determine whether your skills have improved in at least one of the following areas: oral and written communication, critical inquiry, or global awareness.

Grades: Grades are calculated on the standard scale (A=90-100%, B=80-89%; C=70-79%; D=60-69%; F=<60%). A Grade Tracking Sheet is provided.

Posting of Grades: Grades will be posted anonymously using a personal identification number (PIN) supplied by the student. Posting grades allows students to track their grade.
throughout the semester (and to double-check my bookkeeping). If you do not wish your
grades to be posted in this manner, please inform me.

Lab Policies: In keeping with state regulations for laboratory safety, you must wear
approved safety goggles when it is called for in the laboratory (we will provide these), you
must keep the lab space free of food and drinks, and you must dispose of all sharp
instruments, glassware, and chemicals in the prescribed manner. Only registered students
are allowed to attend classes.

Make-up and Late Assignment Policy: Tests are given in the first 30 minutes of class and
cannot be made up unless prior arrangements are made with me. Unless otherwise stated,
late assignments are penalized 25% of the grade earned and only will be accepted within
one week past the due date of the assignment. The make-up policy for labs depends on
the type of lab (hands-on activity, interactive computer simulation, class participation
activity, etc.) and will be announced in class.

Withdrawal (W): November 13 is the last day to withdraw with a grade of "W." You may be
withdrawn by me from this class at any point in the semester up to the Withdrawal Deadline
for unexcused and excessive absences in the class. Additionally, any students that have not
attended the class will be withdrawn on the 45th day of classes. Instructor withdrawals
after the Withdrawal Deadline are given out only under exceptional circumstances; for
example, being behind, receiving low grades, or being overwhelmed with work are NOT valid
reasons for awarding an Instructor withdrawal after the Withdrawal Deadline.

Incomplete (I): The incomplete grade (I) is given to the student who is on track all
semester but is unable to complete the final portion of the course due to an unforeseen
event. A grade of "I" will only be given if all following requirements are met.

- You must have a grade average of C or better.
- You must have completed at least 75% of the coursework.
- You must provide valid documentation showing a medical or other reason for needing an
 incomplete.

The final decision for awarding an "I" rests with me. Being behind or overwhelmed with
work is NOT a valid reason for an "I." To receive a grade of "I," the student must make
the request to me, Nan Schmidt, and fill out the required forms. The last day to request
an "I" is the same as the final exam date.
MyPima and Pima Email: All GLG 140 students are required to activate their MyPima accounts and to check their Pima email at least twice a week. Failure to check your messages may result in you missing important messages from me. The GLG 140 MyPima homepage contains links to some course materials, contact info for me, and more.

You will receive course reminders and information about your progress via your Pima email. At the start of the semester, please send an email to me at nan.schmidt@pima.edu. Please put "GLG 140" in the subject heading.

Course Objectives:
Upon completion of the course, the student will be able to do the following:
1. Perform activities to demonstrate improvement in the general education goals of communication and global awareness.
2. Demonstrate the correct use of a microscope and the ability to measure mass, length, and volume in metrics using appropriate scientific measurement tools.
3. Use the scientific method to design and conduct an experiment.
4. Discuss the history and significance of oceanography.
5. Describe how scientists study the oceans.
6. Discuss the relationship of plate tectonic theory to ocean basins.
7. Compare and contrast marine sediments, their origins, and their relationship to ocean basins.
8. Discuss the roles of salinity, density, and dissolved gases in the ocean.
9. Describe and contrast wind-driven ocean currents and thermohaline circulation.
10. Discuss the types and motions of waves in the ocean.
11. Identify the models of and types of tides on Earth.
12. Compare and contrast nearshore environments, such as estuaries and coral reefs, and human impacts on them.
13. Identify the basic biological habitats in the ocean, their associated biota, and their role in ocean productivity.
14. Discuss how humans use and alter the oceans.

Changes to Syllabus: Please note that any corrections made to the original syllabus during the semester will supersede the original syllabus.
<table>
<thead>
<tr>
<th>Week of</th>
<th>Tuesday</th>
<th>Thursday</th>
<th>Ch. covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 25</td>
<td>No class</td>
<td>Course Info, Directions activity, Lecture 1, Map activity</td>
<td>1, 2</td>
</tr>
<tr>
<td>Sep. 1</td>
<td>Lab 1: Scientific Method</td>
<td>Test 1, Lecture 2, finish Directions activity, Sea floor activity</td>
<td>2, 3</td>
</tr>
<tr>
<td>Sep. 8</td>
<td>Lab 2: Sea-floor mapping</td>
<td>Test 2, Lecture 3, finish Lab 2, Plate tectonic activity</td>
<td>3, 4</td>
</tr>
<tr>
<td>Sep. 15</td>
<td>Lab 3: Plate Tectonics</td>
<td>Test 3, Lecture 4</td>
<td>4, 5</td>
</tr>
<tr>
<td>Sep. 22</td>
<td>Lab 4: Sediment analysis, part 1,</td>
<td>Test 4, Lecture 5, Sediment analysis, cont.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Controversy Report Question due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep. 29</td>
<td>Lab 5: Sediment analysis, part 2</td>
<td>Finish Lecture 5, Density activity, Currents and winds activity, work on Lab 4 & 5</td>
<td>5, 6</td>
</tr>
<tr>
<td>Oct. 6</td>
<td>Test 5, Lecture 6, Waves & Tides activity,</td>
<td>Lab 6: Where am I, Again? work on Controversy Report (the players)</td>
<td>7, 8</td>
</tr>
<tr>
<td></td>
<td>work on Controversy Report (finding info)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 13</td>
<td>Test 6, Lecture 7, Ocean Zones activity,</td>
<td>Lab 7: Survey of marine organisms</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>work on Controversy Report (sides 1 & 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 20</td>
<td>Test 7, Lecture 8, Jeopardy questions due,</td>
<td>Lab 8: Food webs and trophic dynamics, extra credit Barnacles?</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>work on Lab 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 27</td>
<td>Test 8, Lecture 9, work on Controversy Report</td>
<td>Lab 9 Jeopardy; Controversy Outline due</td>
<td>11</td>
</tr>
<tr>
<td>Nov. 3</td>
<td>Test 9, Lecture 10, extra credit</td>
<td>Lab 10: Ecobeaker: Islands, natural selection, and climate; work on Controversy Report</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Election</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 10</td>
<td>Veteran’s Day holiday</td>
<td>Test 10, Lecture 11, extra credit Food Webs?</td>
<td>13</td>
</tr>
<tr>
<td>Nov. 17</td>
<td>Lab 11: Ecobeaker: Oil Spills, work on</td>
<td>Test 11, Lecture 12, Revised Controversy Outline due</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Controversy Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 24</td>
<td>Lab 12: Fisheries: extra credit</td>
<td>Thanksgiving holiday</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eating Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 1</td>
<td>Test 12, Lecture 13, Work on final</td>
<td>Lab 13: Habitat Lab, Part I; Jeopardy, II! questions due</td>
<td></td>
</tr>
<tr>
<td></td>
<td>presentations, help with Powerpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 8</td>
<td>Test 13, Lab 13: Habitat Lab, Part 2</td>
<td>Lab 14: Jeopardy, II!, work on final presentations</td>
<td></td>
</tr>
<tr>
<td>Dec. 15</td>
<td>Final Presentations, review for</td>
<td>Final Presentations (if needed)</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Oceanography
Fall 2006
Student’s Rights and Responsibilities: Students are expected to abide by Pima Community College’s rules and regulations. A summary of the Student’s Rights and Responsibilities, including the Student Code of Conduct and the Code of Academic Ethics, is available at http://www.pima.edu/studentserv/studentrights. A violation of the Code of Academic Ethics may result in a failing grade in the course and may be subject to further penalties.

Americans with Disabilities Act: Pima Community College District strives to comply with the provisions of Title III of the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973. Students with disabilities requiring special accommodations are strongly encouraged to notify the instructor at the beginning of the semester so that appropriate verification and identification of reasonable accommodations may be made in a timely manner. Pima Community College is an equal opportunity, affirmative action employer and educational institution committed to excellence through diversity. Reasonable accommodations, including materials in an alternative format, will be made for individuals with disabilities when a minimum of five working days advance notice is given. Accommodations cannot be made without verification of need. One or more field trips are planned tentatively during the course. A reasonable accommodation will be provided unless it creates an undue hardship or is not possible. Total participation may be denied for education and safety reasons, and an alternative activity will be provided. For the general public, please contact the PCC information line at 206-4500 (TTY 206-4530); for PCC students, contact the Downtown Campus Disabled Student Resource Office, at (520) 206-7286 (TTY 206-7286).
GLG 140 Intro to Oceanography Grade Tracking Sheet, Fall 2008

Tests/Assignments: 12 (out of 13 offered) @ 40 pts each = 480 pts = 63% of grade

Test 1 ____ Test 5 ____ Test 9 ____ Test 13 ____
Test 2 ____ Test 6 ____ Test 10 ____
Test 3 ____ Test 7 ____ Test 11 ____
Test 4 ____ Test 8 ____ Test 12 ____

Laboratories and other work: 280 pts = 36% of grade

Class Activities = 7 (out of 8 offered) @ 5 pts each = 35 pts = 4% of grade

Directions ____ Geography ____ Sea Floor ____ Tectonics ____
Salinity/T/Density ____ Current/Winds ____ Waves/Tides ____ Ocean
zones ____

Laboratories = 160 pts = 21% of grade
14 (out of 15 offered, can’t drop labs 3 or 4).

1. Scientific Method 10 pts
2. Sea-Floor Mapping 10 pts
3. Sediment Analysis Part 1 20 pts
4. Sediment Analysis Part 2 20 pts
5. Plate Tectonics 10 pts
6. Where am I? 10 pts
7. Survey of Marine Organisms 10 pts
8. Primary Productivity and Food Webs 10 pts
9. Jeopardy! Game 10 pts
10. Ecobea: Islands, natural selection & climate 10 pts
11. Ecobea: Oil Spills 10 pts
12. Fisheries Lab 10 pts
13. Habitat Lab Part 1 10 pts
14. Habitat Lab Part 2 10 pts
15. Jeopardy, III 10 pts

Controversy Report and Presentation = 85 pts = 11% of grade

Controversy Question (5 pts)
Controversy Outline (40 pts)
Presentation (40 pts):

OPTIONAL COMPREHENSIVE FINAL EXAM
Any points above 70 on the final will be added to your total exam points

EXTRA CREDIT ACTIVITIES
Miscellaneous extra credit activities

FINAL GRADE:
Total points earned ____/760 total points possible = ____ * 100 = ____%

A = 760-684 B = 683-608 C = 607-532 D = 531-456 F < 456

Introduction to Oceanography Fall 2006 7
GLG 140 Syllabus and Class Agreement Form

Please initial the items below, fill out the remainder of this form, and return it to me. By signing this agreement form, I acknowledge that

I have activated my MyPima account (or will within the next week). _____
I will check my Pima email at least twice a week. _____
I have read the syllabus. _____
I have read the PCC Student Code of Conduct & Scholastic Ethics (previous page). _____
I understand the policies on grading, taking exams, grades of withdrawal ("W"), grades of incomplete ("I"), and other policies of the class as described in the syllabus. _____

__

Student's Signature and Date

__
Print Name
Name you want me to call you (if different from above):
Telephone (optional): (for emergencies like class cancellations)
Pima email: @students.pima.edu

Secret code: Choose 4-6 numbers and/or letters. Your secret code will be used to post you grades anonymously, enabling you to know your grade in the class (and to double check my book-keeping). You may request not to have your grades posted anonymously, but please cross-check your record-keeping with mine occasionally during the semester.

Major:

Career objective:

Reason for taking course (check all that apply)
☐ General Education Requirement
☐ Core or Support Course for degree
☐ Personal interest (explain)

What do you hope to learn in this course?

What grade do you hope to achieve in this class? ☐ A ☐ B ☐ C ☐ D ☐ F
What is the lowest grade you would be satisfied with in this class? ☐ A ☐ B ☐ C ☐ D ☐ F

Comments/concerns?

Introduction to Oceanography Fall 2008