GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:
Copy and paste current course information from Class Search/Course Catalog.

College/School: Ira A. Fulton Schools of Engineering
Department: Perception and Human Systems Engineering

Prefix: HSE  Number: 323  Title: Perception and Human Systems

Is this a cross-listed course?  No
If yes, please identify course(s)

Is this a shared course?  No
If so, list all academic units offering this course

Note: For courses that are crosslisted and/or shared, a letter of support from the chair/director of each department that offers the course is required for each designation requested. By submitting this letter of support, the chair/director agrees to ensure that all faculty teaching the course are aware of the General Studies designation(s) and will teach the course in a manner that meets the criteria for each approved designation.

Is this a permanent numbered course with topics? Yes
If yes, all topics under this permanent numbered course must be taught in a manner that meets the criteria for the approved designation(s). It is the responsibility of the chair/director to ensure that all faculty teaching the course are aware of the General Studies designation(s) and adhere to the above guidelines.

Course description: In-depth exploration of methods by which humans receive and interpret information from the world through vision, audition, taste, smell, touch, and movement. Emphasizes the integration of behavioral research with applications to engineering practice. Topics will cover a wide range from the biological basis of sensory information processing, to the behavioral aspects of perception, and to the applications of perceptual theories to disciplines like computer vision, and graphic design. Students will gain a solid foundation for further study and research in psychology, sociology, human development, neuroscience, and other related fields.

Requested designation: Social-Behavioral Sciences-SB

Mandatory Review: No

Eligibility:
Permanent numbered courses must have completed the university’s review and approval process.
For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu.

Submission deadlines dates are as follow:
For Fall 2016 Effective Date: October 1, 2015
For Spring 2017 Effective Date: March 10, 2016

Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:
Complete and attach the appropriate checklist
- Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/Statistics/quantitative applications core courses (CS)
- Humanities, Arts and Design core courses (HU)
- Social-Behavioral Sciences core courses (SB)
- Natural Sciences core courses (N)
- Cultural Diversity in the United States courses (C)
- Global Awareness courses (G)
- Historical Awareness courses (H)

A complete proposal should include:
- Signed course proposal cover form
- Criteria checklist for General Studies designation(s) being requested
- Course catalog description
- Sample syllabus for the course
- Copy of table of contents from the textbook and list of required readings/books

It is respectfully requested that proposals are submitted electronically with all files compiled into one PDF.

Contact information:
Name: Nancy J. Cooke  E-mail: ncooke@asu.edu  Phone: 480-727-5158

Rev. 4/2015
Department Chair/Director approval: *(Required)*

Chair/Director name (Typed): Ann McKenna

Date: 3/10/16

Chair/Director (Signature):
Rationale and Objectives

Social-behavioral sciences use distinctive scientific methods of inquiry and generate empirical knowledge about human behavior, within society and across cultural groups. Courses in this area address the challenge of understanding the diverse natures of individuals and cultural groups who live together in a complex and evolving world.

In both private and public sectors, people rely on social scientific findings to consider and assess the social consequences of both large-scale and group economic, technological, scientific, political, ecological and cultural change. Social scientists' observations about human interactions with the broader society and their unique perspectives on human events make an important contribution to civic dialogue.

Courses proposed for a General Studies designation in the Social-Behavioral Sciences area must demonstrate emphases on: (1) social scientific theories, perspectives and principles, (2) the use of social-behavioral methods to acquire knowledge about cultural or social events and processes, and (3) the impact of social scientific understanding on the world.

Revised April 2014
Proposer: Please complete the following section and attach appropriate documentation.

### ASU--[SB] CRITERIA

A SOCIAL-BEHAVIORAL SCIENCES [SB] course should meet all of the following criteria. If not, a rationale for exclusion should be provided.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Identify Documentation Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>❌</td>
<td>❌</td>
<td><strong>1.</strong> Course is designed to advance basic understanding and knowledge about human interaction.</td>
</tr>
</tbody>
</table>
| ❌   | ❌ | **2.** Course content emphasizes the study of social behavior such as that found in:  
|     |     | - ANTHROPOLOGY  
|     |     | - ECONOMICS  
|     |     | - CULTURAL GEOGRAPHY  
|     |     | - HISTORY  
|     |     | Psychology |
| ❌   | ❌ | **3.** Course emphasizes:  
|     |     | a. the distinct knowledge base of the social and behavioral sciences (e.g., sociological anthropological).  
|     |     | b. the distinct methods of inquiry of the social and behavioral sciences (e.g., ethnography, historical analysis). |
| ❌   | ❌ | **4.** Course illustrates use of social and behavioral science perspectives and data. |

THE FOLLOWING TYPES OF COURSES ARE EXCLUDED FROM THE [SB] AREA EVEN THOUGH THEY MIGHT GIVE SOME CONSIDERATION TO SOCIAL AND BEHAVIORAL SCIENCE CONCERNS:

- Courses with primarily arts, humanities, literary or philosophical content.
- Courses with primarily natural or physical science content.
- Courses with predominantly applied orientation for professional skills or training purposes.
- Courses emphasizing primarily oral, quantitative, or written skills.
<table>
<thead>
<tr>
<th>Course Prefix</th>
<th>Number</th>
<th>Title</th>
<th>General Studies Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSE</td>
<td>323</td>
<td>Perception and Human Systems</td>
<td>SB</td>
</tr>
</tbody>
</table>

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

<table>
<thead>
<tr>
<th>Criteria (from checksheet)</th>
<th>How course meets spirit (contextualize specific examples in next column)</th>
<th>Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This is a re-submission of the application of a SB general studies designation for HSE323. The last application did not get approved because “The course appears to focus largely on individual perspectives of perception. The application made a very strong case that this course emphasizes behavioral sciences in distinctive ways. However, the social-behavioral orientation was modest, at best.”</td>
<td>The classes on 03/28/2017, 03/02/2017, 02/28/2017, &amp; 04/06/2017 focus particularly on the perceptual processes involved in social interactions, for example, speech perception, understanding of other people's intention and action, perception of facial emotions and attractiveness, and pain perceived in social situations.</td>
</tr>
</tbody>
</table>

We agree with the committee that this course emphasizes the “individual perspectives of perception”, because it is designed to provide students with a profound understanding of the concepts and facts of perceptual psychology. This course will be taught on the Polytechnic campus. Students will be from not only our Human Systems Engineering program but also other engineering or non-engineering programs. The course will let them gain a solid understanding of how our perceptual systems operate, what perceptual limitations exist, and how our perception can be improved using engineering and designing approaches. We believe that these goals match well with the purposes of SB general studies that “provide scientific methods of inquiry and empirical knowledge about human behavior, within society and INDIVIDUALLY.” (https://catalog.asu.edu/ug_gsr)

We have revised the syllabus based on the reviewers’ feedback and added...
<table>
<thead>
<tr>
<th></th>
<th>more content on the perception from social environments. Topics specifically include perceiving faces &amp; recognizing emotions and attractiveness (03/02/2017), perceiving other people's intention and action (02/28/2017), perceiving pain in social situations (04/06/2017).</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>This course is designed to provide students with a profound understanding of how we receive and interpret information from the natural and social environments. One theme is the perception of information from social interactions. It will cover how we perceive speech, how we understand other people's intention and action, how we perceive facial emotions and attractiveness, and how we feel touch and pain in social situations. These topics will be beneficial not only for students in psychology and sociology, but also students in engineering programs who can apply perceptual theories and research to problems such as developing effective human-machine interaction, designing VR applications without perceptual discomfort.</td>
</tr>
<tr>
<td></td>
<td>See the course syllabus. The classes on 02/28/2017, 03/02/2017, 03/28/2017, 03/30/2017, &amp; 04/06/2017 address the perceptual problems in the context of social interactions in real and virtual environments such as understanding of other people's intention and action, perception of emotions and attractiveness, speech perception, music perception, and feeling of pain in social situations.</td>
</tr>
<tr>
<td>3</td>
<td>This course aims to give students a solid knowledge base in the concepts and facts of perceptual psychology. It will extensively cover the behavioral aspects of perception and use many real-world illustrations and illusions to show how our perceptual systems work. It also teaches students the techniques and methods used to investigate human behavior (see Chap 1 &amp; Appendix).</td>
</tr>
<tr>
<td></td>
<td>The class on 01/17/2017, for example, will address specifically the research methods used to study human perception. Signal detection theory will be covered, which has been used in a wide range of research areas in psychology, sociology, and neuroscience.</td>
</tr>
<tr>
<td>4</td>
<td>This course emphasizes the integration of behavioral research with potential applications to engineering practice. The covered topics will include the application of perceptual theories to real-world problems like computer vision, display technologies, graphic design, sound processing, etc. For example, classes on 02/21/2017, 03/30/2017, &amp; 04/20/2017 discuss the perception in 3D displays, virtual-reality applications, and other human-machine interfaces.</td>
</tr>
<tr>
<td></td>
<td>Throughout this course we will discuss the application of perceptual theories to real-world problems, for example, the perception of depth in 3D displays (02/21/2017), perceptual issues/discomforts in virtual-reality applications (03/30/2017), and sensory substitution in the human-machine interfaces (04/20/2017).</td>
</tr>
</tbody>
</table>
HSE 323: Perception and Human Systems

In-depth exploration of methods by which humans receive and interpret information from the world through vision, audition, taste, smell, touch, and movement. Emphasizes the integration of behavioral research with applications to engineering practice. Topics will cover a wide range from the biological basis of sensory information processing, to the behavioral aspects of perception, and to the applications of perceptual theories to disciplines like computer vision, and graphic design. Students will gain a solid foundation for further study and research in psychology, sociology, human development, neuroscience, and other related fields.
HSE-323: Perception and Human Systems
Arizona State University
Spring semester 2017
Course line # 12345

Instructor Information:
Instructor: Bing Wu, Ph.D.
Human System Engineering Program
Email: Bing.Wu@asu.edu (preferred contact method)
Work Phone: 480-727-3716 (O)
Office Hours: Tues & Thurs, 4:30 – 5:30 or by appointments through email
Office Location: 150E, Santa Catalina Hall, Polytechnic campus

Course Information:
Pre-requisites: EGR 103 or PSY 101 and junior or senior standing
Course Format: Lectures. The class will meet on Tuesdays and Thursdays from 12:00 to 1:15 pm at Room 310, Peralta Hall.
Course description: Nothing that we experience in our life would be possible without the sensory systems: We use our five senses to see, hear, feel, smell and sometimes taste the world. This course is designed to give you an in-depth overview of how and why we perceive the world through our senses in the way we do. Particular emphasis will be placed on the integration of behavioral research with potential applications to engineering practice. Topics will cover a wide range from the behavioral aspects of perception, to the biology of sensory systems, and to the applications of perceptual theories to disciplines like computer vision, display technologies, graphic design, and sound processing. Upon successful completion of this course, you will have a solid understanding of how our perceptual systems work.

Required Course Texts, Materials and Resources:
The required textbook is as follows:

Other course materials like assigned readings, Powerpoint slides, and study guides for the exams will be available on the Blackboard system (http://myasucourses.asu.edu).

Student Objectives and Learning Outcomes
After completing this course, students should be able to:
• Have a solid understanding of how we sense and perceive the world around us and how these mechanisms affect our lives;
• Identify the classical and modern research techniques, and their roles in the science of perceptual systems;
• Recognize our perceptual limitations, learn from them, and apply perceptual principles and research to real-world problems (e.g., to develop human-machine interface for effective sensory communications; to reduce symptoms of perceptual distortions and discomfort when designing VR applications, …);
• Critically analyze original research in perception.
<table>
<thead>
<tr>
<th>Date</th>
<th>Class Topic &amp; Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10/2017</td>
<td>Syllabus &amp; class introduction</td>
</tr>
<tr>
<td>01/12/2017</td>
<td>Introduction to perceptual systems</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 1 (pp. 3 - 12)</td>
</tr>
<tr>
<td>01/17/2017</td>
<td>Research methods &amp; techniques</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 1 (pp. 12 - 20), Appendix (401-406)</td>
</tr>
<tr>
<td>01/19/2017</td>
<td>Biological foundations of perception</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 2 (pp. 23 - 39)</td>
</tr>
<tr>
<td>01/24/2017</td>
<td>The first steps in seeing</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 3 (pp. 43 - 68)</td>
</tr>
<tr>
<td>01/26/2017</td>
<td>Visual perception: From eyes to brain</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 4 (pp. 73 - 87)</td>
</tr>
<tr>
<td>01/31/2017</td>
<td>Visual perception: Information processing in the brain</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 4 (pp. 88 - 95)</td>
</tr>
<tr>
<td>02/02/2017</td>
<td>Perception of color</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 9 (pp. 201 - 225)</td>
</tr>
<tr>
<td>02/07/2017</td>
<td>Review (1)</td>
</tr>
<tr>
<td>02/09/2017</td>
<td><strong>Exam 1</strong></td>
</tr>
<tr>
<td>02/14/2017</td>
<td>Perceiving objects and scenes</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 5 (pp. 99 - 127)</td>
</tr>
<tr>
<td>02/16/2017</td>
<td>Seeing motion</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 8 (pp. 177 - 196)</td>
</tr>
<tr>
<td>02/21/2017</td>
<td>Space perception &amp; 3D-display technologies</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 10 (pp. 229 - 255)</td>
</tr>
<tr>
<td></td>
<td>Advances in Optics and Photonics, 5(4), pp. 456-535</td>
</tr>
<tr>
<td>02/23/2017</td>
<td>Visual attention &amp; awareness</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 6 (pp. 133 - 150)</td>
</tr>
<tr>
<td>02/28/2017</td>
<td>Perceiving intention &amp; action</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 7 (pp. 155 - 172)</td>
</tr>
<tr>
<td>03/02/2017</td>
<td>Perceiving faces &amp; recognizing emotions and attractiveness</td>
</tr>
<tr>
<td>03/07/2017</td>
<td>Spring Break – Classes Excused</td>
</tr>
<tr>
<td>03/09/2017</td>
<td></td>
</tr>
<tr>
<td>03/14/2017</td>
<td>The first steps in hearing</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 11 (pp. 259 - 287)</td>
</tr>
<tr>
<td>03/16/2017</td>
<td>Localizing sounds</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 12 (pp. 291 - 307)</td>
</tr>
<tr>
<td>03/21/2017</td>
<td>Review (2)</td>
</tr>
<tr>
<td>03/23/2017</td>
<td><strong>Exam 2</strong></td>
</tr>
<tr>
<td>03/28/2017</td>
<td>Perceiving speech &amp; Music</td>
</tr>
<tr>
<td></td>
<td>Reading: Chap 13 (pp. 311 - 325)</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>04/04/2017</td>
<td>Senses of touch</td>
</tr>
<tr>
<td>04/06/2017</td>
<td>Pain perception</td>
</tr>
<tr>
<td>04/11/2017</td>
<td>Smelling</td>
</tr>
<tr>
<td>04/13/2017</td>
<td>Tasting</td>
</tr>
<tr>
<td>04/25/2017</td>
<td>Changes in perception through the life-span</td>
</tr>
<tr>
<td>04/27/2017</td>
<td>Review (3)</td>
</tr>
<tr>
<td>05/04/2017</td>
<td>Exam 3</td>
</tr>
</tbody>
</table>

**Syllabus disclaimer:**
Efforts will be made to follow the syllabus as outlined above. However, the possibility exists that unforeseen events will make syllabus changes necessary. I reserve the right to make changes to this syllabus and/or course schedule. If changes are made, you will be notified in a timely manner by e-mail or by an announcement in class.
Course Assignments
For each topic, there will be lectures and assigned readings. The course requirements are (1) participation in class; (2) homework; (3) quizzes, and (4) three exams.

**Readings:** Reading assignments will be posted on the Blackboard or come from the textbooks. You should do the assigned reading before class.

**Homework:** Homework assignments will be posted on the Blackboard.

**Quizzes:** Quizzes will be given at the beginning of each class (excluding the review and exam days). They are designed to test your understanding of the reading assignment and ensure that you come prepared. Each quiz will account for 1% of the total grade. The quizzes also serve as an attendance record. NO make-up quizzes will be given. If a student misses a quiz, he or she will receive NO point for that quiz.

**Exams:** There will be three exams based on the materials covered in the classroom. The exams will be closed-book, closed-notes, closed-homework, and taken in class. The format is a combination of multiple-choice, short answer, and short essay. There will be NO make-up exam unless there is a documented emergency. Anyone missing an exam without a ASU sanctioned excuse will receive a zero score.

The course grade will be based as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>20 pts</td>
</tr>
<tr>
<td>Exam 2</td>
<td>20 pts</td>
</tr>
<tr>
<td>Exam 3</td>
<td>20 pts</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20 pts</td>
</tr>
<tr>
<td>Homework</td>
<td>20 pts</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>100 pts</td>
</tr>
</tbody>
</table>

**Grading Scale**
Final grades will be assigned as follows:

- **A+**  >=96%
- **A**  93-95%
- **A-**  90-92%
- **B+**  86-89%
- **B**  83-85%
- **B-**  80-82%
- **C+**  76-79%
- **C**  70-75%
- **D**  60-69%
- **E**  <60%
- **XE**  Failure due to Academic Dishonesty

NO incomplete grades will be given except in cases of serious medical emergencies as evidenced by a documented report.

**Grade Appeals**
ASU has formal and informal channels to appeal a grade. If you wish to appeal any grading decisions, please see [http://catalog.asu.edu/appeal](http://catalog.asu.edu/appeal).

**Classroom behavior:**
- **Attendance and Participation**
  Your presence for the entire class period is mandatory and critical to academic success. The following penalties will be imposed for missing class without a valid and verifiable excuse: Every unexcused absence causes a deduction of 5 points from the
Absences will be excused ONLY if the student has a ASU sanctioned excuse. The excused absences include those resulting from: (1) illness, death in the family or other emergency, or other reasons beyond the student’s control; (2) a student’s religious beliefs, observances, and practices that are in accord with ACD 304–04 (http://www.asu.edu/aad/manuals/acd/acd304-04.html), “Accommodation for Religious Practices”, and (3) those university sanctioned events/activities that are in accord with ACD 304–02 (http://www.asu.edu/aad/manuals/acd/acd304-02.html), “Missed Classes Due to University-Sanctioned Activities”.

- **Late and Missing Assignments**
  Make-up exams will NOT be given unless the student provides documentation of the illness or emergency. Anyone missing an exam without a university sanctioned excuse will receive a zero score.

- **Cell Phone and Recording Devices**
  Always turn off your cellular phone before you enter our classroom. You are not allowed to receive and make phone calls during class meetings. Other communication devices and recording devices are also strictly prohibited from the classroom.

- **Electronic Communication**
  Acceptable use of university computers, internet and electronic communications can be found in the Student Code of Conduct (http://www.asu.edu/aad/manuals/usi/usi104-01.html) and in the University’s Computer, Internet, and Electronic Communications Policy (http://www.asu.edu/aad/manuals/acd/acd125.html).

**University policies:**

- **Academic Integrity**
  All students at ASU are expected to follow the Student Code of Conduct. Each student must act with honesty and integrity, and must respect the rights of others in carrying out all academic assignments. Plagiarism, and any other form of academic dishonesty that is in violation with the Student Code of Conduct, will not be tolerated. All necessary and appropriate sanctions will be issued to all parties involved with plagiarizing any and all course work. For more information, please see the ASU Student Academic Integrity Policy: http://provost.asu.edu/academicintegrity.

- **Nondiscrimination, Anti-Harassment, and Nonretaliation**
  Arizona State University is committed to providing the university community, including students, faculty, staff, and guests, with an environment that is free of harassment, discrimination, or retaliation. ASU expressly prohibits harassment, discrimination, and retaliation by employees, students, contractors, or agents of the university based on protected status, including race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, and gender identity. If you believe that you have been subjected to any discrimination, harassment, or retaliation in violation of this policy, or you believe that this policy has been violated, you should report the matter immediately to the Office of Equity and Inclusion (https://cfo.asu.edu/hr-equityandinclusion; Phone: (480) 965-5057; Fax: (480) 237-7998; Email: EqualityandInclusion@mainex1.asu.edu).
• **Policy against Threatening Behavior**
  Any kind of abusive, disruptive, threatening, or violent behaviour will NOT be tolerated. Students are expected to comply with the ASU policy against threatening behavior, per the *Student Services Manual, SSM 104–02* (http://www.asu.edu/aad/manuals/ssm/ssm104-02.html), “Handling Disruptive, Threatening, or Violent Individuals on Campus”. Any violent or threatening conduct by an ASU student in this class will be reported to the ASU Police Department and the Office of the Dean of Students.

• **Disability Accommodations**
  To request academic accommodations due to a disability, please contact the ASU Disability Resource Center (https://eoss.asu.edu/drc; Phone: (480) 965-1234; Fax: (480) 965-0441; Email: DRC@asu.edu). This is a very important step as accommodations may be difficult to make retroactively. If you have a letter from their office indicating that you have a disability which requires academic accommodations, in order to assure that you receive your accommodations in a timely manner, please present this documentation to me no later than the end of the first week of the semester so that your needs can be addressed effectively.

• **Religious Accommodations**
  Students will not be penalized for missing class due to religious obligations, holidays, observances, and practices that are in accord with ACD 304–04 (http://www.asu.edu/aad/manuals/acd/acd304-04.html). Students who need to be absent from class due to the observance of a religious holiday or participate in required religious functions must notify me in writing as far in advance of the holiday/obligation as possible. Students will need to identify the specific holiday or obligatory function to me. The student should contact me to make arrangements for making up tests/assignments within a reasonable time.

• **Military Personnel Statement**
  A student who is a member of the National Guard, Reserve, or other U.S. Armed Forces branch and is unable to complete classes because of military activation may request complete or partial administrative unrestricted withdrawals or incompletes depending on the timing of the activation. For information, please see http://www.asu.edu/aad/manuals/usi/usi201-18.html.
Textbook

List of additional course materials *(Will be available on Blackboard)*

Book chapters:

- Chapter 9. Vestibular and proprioceptive systems
- Chapter 12. Recognising faces.
- Chapter 13. Perceiving emotions and attractiveness.

- Chapter 1. Introduction to Virtual Reality

Research articles:


<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Perception</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to the Physiology of Perception</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Vision</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>The Visual Cortex and Beyond</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Perceiving Objects and Scenes</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Visual Attention</td>
<td>133</td>
</tr>
<tr>
<td>7</td>
<td>Taking Action</td>
<td>155</td>
</tr>
<tr>
<td>8</td>
<td>Perceiving Motion</td>
<td>177</td>
</tr>
<tr>
<td>9</td>
<td>Perceiving Color</td>
<td>201</td>
</tr>
<tr>
<td>10</td>
<td>Perceiving Depth and Size</td>
<td>229</td>
</tr>
<tr>
<td>11</td>
<td>Sound, the Auditory System, and Pitch Perception</td>
<td>259</td>
</tr>
<tr>
<td>12</td>
<td>Sound Localization and the Auditory Scene</td>
<td>291</td>
</tr>
<tr>
<td>13</td>
<td>Speech Perception</td>
<td>311</td>
</tr>
<tr>
<td>14</td>
<td>The Cutaneous Senses</td>
<td>329</td>
</tr>
<tr>
<td>15</td>
<td>The Chemical Senses</td>
<td>355</td>
</tr>
<tr>
<td>16</td>
<td>Perceptual Development</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal Detection Theory</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>Name Index</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Subject Index</td>
<td>449</td>
</tr>
</tbody>
</table>
Contents

Introduction to Perception 3

WHY READ THIS BOOK? 4

THE PERCEPTUAL PROCESS 5
The Stimulus 5
Electricity 7
Experience and Action 8
Knowledge 9
DEMONSTRATION: Perceiving a Picture 10

HOW TO APPROACH THE STUDY OF PERCEPTION 11

MEASURING PERCEPTION 12
Description 13
Recognition 13
METHOD: Recognition 13
Detection 13
METHOD: Determining the Absolute Threshold 13
METHOD: Determining the Difference Threshold 15
Magnitude Estimation 16
METHOD: Magnitude Estimation 16
Search 17
Other Methods of Measurement 17

SOMETHING TO CONSIDER: THRESHOLD MEASUREMENT CAN BE INFLUENCED BY HOW A PERSON CHOOSES TO RESPOND 18

TEST YOURSELF 1.1 18

Think About It 19
If You Want to Know More 19
Key Terms 19
Media Resources 19
VIRTUAL LAB 20

THE BRAIN: THE MIND’S COMPUTER 24
Brief History of the Physiological Approach 24
Basic Structure of the Brain 26

NEURONS: CELLS THAT CREATE AND TRANSMIT ELECTRICAL SIGNALS 26
Structure of Neurons 26
Recording Electrical Signals in Neurons 27
METHOD: Recording From a Neuron 27
Chemical Basis of Action Potentials 29
Basic Properties of Action Potentials 30
Events at the Synapse 30

TEST YOURSELF 2.1 32

NEURAL PROCESSING: EXCITATION, INHIBITION, AND INTERACTIONS BETWEEN NEURONS 32
Excitation, Inhibition, and Neural Responding 32
Introduction to Receptive Fields 34
METHOD: Determining a Neuron’s Receptive Field 34

THE SENSORY CODE: HOW THE ENVIRONMENT IS REPRESENTED BY THE FIRING OF NEURONS 36
Specificity Coding: Representation by the Firing of Single Neurons 36
Distributed Coding: Representation by the Firing of Groups of Neurons 38
Sparse Coding: Distributed Coding With Just a Few Neurons 38

SOMETHING TO CONSIDER: THE MIND–BODY PROBLEM 39

TEST YOURSELF 2.2 39
Think About It 40
Perceiving Objects and Scenes  

WHY IS IT SO DIFFICULT TO DESIGN A PERCEIVING MACHINE?  

- The Stimulus on the Receptors Is Ambiguous  
- Objects Can Be Hidden or Blurred  
- Objects Look Different From Different Viewpoints  

THE GESTALT APPROACH TO OBJECT PERCEPTION  

- Making Illusory Contours Vanish  
- The Gestalt Laws of Perceptual Organization  
- Perceptual Segregation: How Objects Are Separated From the Background  
- The Gestalt "Laws" as Heuristics  

RECOGNITION-BY-COMPONENTS THEORY  

- Non-Accidental Properties  

PERCEIVING SCENES AND OBJECTS IN SCENES  

- Perceiving the Gist of a Scene  
- Regularities in the Environment: Information for Perceiving  
- Shape From Shading  
- Visualizing Scenes and Objects  
- The Role of Inference in Perception  
- Revisiting the Science Project: Designing a Perceiving Machine  

THE PHYSIOLOGY OF OBJECT AND SCENE PERCEPTION  

- Neurons That Respond to Perceptual Grouping and Figure–Ground  
- How Does the Brain Respond to Objects?  
- Connecting Neural Activity and Perception  

SOMETHING TO CONSIDER: MODELS OF BRAIN ACTIVITY THAT CAN PREDICT WHAT A PERSON IS LOOKING AT  

ATTENTION AND PERCEIVING THE ENVIRONMENT  

- Why Is Selective Attention Necessary?  
- How Is Selective Attention Achieved?  
- What Determines How We Scan a Scene?  

HOW DOES ATTENTION AFFECT OUR ABILITY TO PERCEIVE?  

- Perception Can Occur Without Focused Attention  
- Perception Can Be Affected by a Lack of Focused Attention  
- Change Detection  

DOES ATTENTION ENHANCE PERCEPTION?  

- Effects of Attention on Information Processing  
- Effects of Attention on Perception  

ATTENTION AND EXPERIENCING A COHERENT WORLD  

- Why Is Binding Necessary?  
- Feature Integration Theory  
- Searching for Conjunctions  

THE PHYSIOLOGY OF ATTENTION  

- Region-of-Interest Approach  

SOMETHING TO CONSIDER: ATTENTION IN AUTISM  

Key Terms  
Media Resources  

VIRTUAL LAB  

Think About It  
If You Want to Know More  
Key Terms  
Media Resources  

Contents  

xii
Taking Action 155

THE ECOLOGICAL APPROACH TO PERCEPTION 156
The Moving Observer and Information in the Environment 156
Self-Produced Information 157
The Senses Do Not Work in Isolation 158
DEMONSTRATION: Keeping Your Balance 158

NAVIGATING THROUGH THE ENVIRONMENT 159
Other Strategies for Navigating 159
The Physiology of Navigation 161

ACTING ON OBJECTS: REACHING AND GRASPING 165
Affordances: What Objects Are Used For 165
The Physiology of Reaching and Grasping 166

OBSERVING OTHER PEOPLE’S ACTIONS 168
Mirroring Others’ Actions in the Brain 168
Predicting People’s Intentions 169
Mirror Neurons and Experience 170

SOMETHING TO CONSIDER: CONTROLLING MOVEMENT WITH THE MIND 171

Perceiving Motion 177

FUNCTIONS OF MOTION PERCEPTION 178
Motion Helps Us Understand Events in Our Environment 178
Motion Attracts Attention 179

Motion Provides Information About Objects 179

STUDYING MOTION PERCEPTION 180
When Do We Perceive Motion? 180
Comparing Real and Apparent Motion 181
What We Want to Explain 182

MOTION PERCEPTION: INFORMATION IN THE ENVIRONMENT 183
NEURAL FIRING TO MOTION ACROSS THE RETINA 184
Motion of a Stimulus Across the Retina: The Aperture Problem 184
DEMONSTRATION: Motion of a Bar Across an Aperture 185
Motion of Arrays of Dots on the Retina 186
METHOD: Microstimulation 188

TEST YOURSELF 8.1 188

TAKING EYE MOTIONS INTO ACCOUNT: THE COROLLARY DISCHARGE 189
Corollary Discharge Theory 189
Behavioral Demonstrations of Corollary Discharge Theory 190
DEMONSTRATION: Eliminating the Image Displacement Signal With an Afterimage 190
DEMONSTRATION: Seeing Motion by Pushing on Your Eyelid 190
Physiological Evidence for Corollary Discharge Theory 191

PERCEIVING BIOLOGICAL MOTION 192
Brain Activation by Point-Light Walkers 192
Linking Brain Activity and the Perception of Biological Motion 193
METHOD: Transcranial Magnetic Stimulation (TMS) 193

SOMETHING TO CONSIDER: GOING BEYOND THE STIMULUS 194
Implied Motion 194
Apparent Motion 195

TEST YOURSELF 8.2 195

Think About It 196
If You Want to Know More 196
Key Terms 197
Media Resources 197

VIRTUAL LAB 174
VIRTUAL LAB 197
Perceiving Color 201

INTRODUCTION TO COLOR 202
What Are Some Functions of Color Vision? 202
What Colors Do We Perceive? 203
Color and Wavelength 204
Wavelengths Do Not Have Color! 206

TRICHROMATIC THEORY OF COLOR VISION 207
Behavioral Evidence for the Theory 207
The Theory: Vision Is Trichromatic 207
Physiology of Trichromatic Theory 207

COLOR DEFICIENCY 211
Monochromatism 212
Dichromatism 212
Physiological Mechanisms of Receptor-Based Color Deficiency 213

OPPONENT-PROCESS THEORY OF COLOR VISION 213
Behavioral Evidence for the Theory 213
DEMONSTRATION: The Colors of the Flag 214
DEMONSTRATION: Afterimages and Simultaneous Contrast 214
DEMONSTRATION: Visualizing Colors 214
The Theory: Vision Is An Opponent Process 215
The Physiology of Opponent-Process Vision 215

COLOR IN THE CORTEX 217
DEMONSTRATION: Color Perception Under Changing Illumination 218
Chromatic Adaptation 219
DEMONSTRATION: Adapting to Red 219
The Effect of the Surroundings 220
DEMONSTRATION: Color and the Surroundings 220
Memory and Color 220

LIGHTNESS CONSTANCY 220
Intensity Relationships: The Ratio Principle 221
Lightness Perception Under Uneven Illumination 221
DEMONSTRATION: The Penumbra and Lightness Perception 222
DEMONSTRATION: Perceiving Lightness at a Corner 223

OCULOMOTOR CUES 231
DEMONSTRATION: Feelings in Your Eyes 231
MONOCULAR CUES 231
Pictorial Cues 231
Motion-Produced Cues 233
DEMONSTRATION: Deletion and Accretion 234

BINOCULAR DEPTH INFORMATION 235
Binocular Disparity 235
DEMONSTRATION: Two Eyes: Two Viewpoints 235
Connecting Disparity Information and the Perception of Depth 238
DEMONSTRATION: Binocular Depth From a Picture, Without a Stereoscope 238
The Correspondence Problem 240

DEPTH INFORMATION ACROSS SPECIES 240
THE PHYSIOLOGY OF DEPTH PERCEPTION 242
Neurons That Respond to Pictorial Depth 242
Neurons That Respond to Binocular Disparity 242
Connecting Binocular Depth Cells and Depth Perception 242
DEMONSTRATION: Perceiving Size at a Distance 247
DEMONSTRATION: Size–Distance Scaling and Emmert’s Law 247

VISUAL ILLUSIONS 249
The Müller-Lyer Illusion 249
DEMONSTRATION: Measuring the Müller-Lyer Illusion 249
DEMONSTRATION: The Müller-Lyer Illusion With Books 250
Sound, the Auditory System, and Pitch Perception 259

THE SOUND STIMULUS 261
Sound as Pressure Changes 261
Pressure Changes: Pure Tones 262
Pressure Changes: Complex Tones 263

PERCEIVING SOUND 264
Loudness 264
Pitch 265
The Range of Hearing 265
Timbre 267

THE EAR 268
The Outer Ear 268
The Middle Ear 268
The Inner Ear 270

THE REPRESENTATION OF FREQUENCY IN THE COCHLEA 272
Békésy’s Place Theory of Hearing 273
Evidence for Place Theory 274
METHOD: Neural Frequency Tuning Curves 274
METHOD: Auditory Masking 275
How the Basilar Membrane Vibrates to Complex Tones 276
Updating Békésy 277
How the Timing of Neural Firing Can Signal Frequency 277
Hearing Loss Due to Hair Cell Damage 278

CENTRAL AUDITORY PROCESSING 280
Pathway From the Cochlea to the Cortex 280
Auditory Areas in the Cortex 280
What and Where Streams for Hearing 281

PITCH AND THE BRAIN 283
Linking Physiological Responding and Perception 283
How the Auditory Cortex Is Shaped by Experience 284

SOMETHING TO CONSIDER: DISTANCE PERCEPTION AND PERCEIVED EFFORT 253

TEST YOURSELF 10.2 254
Think About It 254
If You Want to Know More 255
Key Terms 256
Media Resources 256

VIRTUAL LAB 256

Sound Localization and the Auditory Scene 291

AUDITORY LOCALIZATION 292
DEMONSTRATION: Sound Localization 292
Binaural Cues for Sound Location 293
Monaural Cue for Localization 295

THE PHYSIOLOGY OF AUDITORY LOCALIZATION 297
Narrowly Tuned ITD Neurons 297
Broadly Tuned ITD Neurons 298

TEST YOURSELF 12.1 298

PERCEPTUALLY ORGANIZING SOUNDS IN THE ENVIRONMENT 299
Auditory Scene Analysis 299
Principles of Auditory Grouping 300

HEARING INSIDE ROOMS 303
Perceiving Two Sounds That Reach the Ears at Different Times 304
DEMONSTRATION: The Precedence Effect 305
Architectural Acoustics 305

SOMETHING TO CONSIDER: INTERACTIONS BETWEEN VISION AND HEARING 306

TEST YOURSELF 12.2 307
Think About It 307
If You Want to Know More 308
Key Terms 308
Media Resources 308

VIRTUAL LAB 308
Speech Perception 311

THE SPEECH STIMULUS 312
The Acoustic Signal 312
Basic Units of Speech 313

THE VARIABLE RELATIONSHIP BETWEEN PHONEMES AND THE ACOUSTIC SIGNAL 315
Variability From Context 315
Variability From Different Speakers 315

INFORMATION FOR PHONEME PERCEPTION 316
Categorical Perception 316
Information Provided by the Face 318
Information From Our Knowledge of Language 318

INFORMATION FOR SPOKEN WORD PERCEPTION 319
Information From Sentence Context 319

DEMONSTRATION: Perceiving Degraded Sentences 319
DEMONSTRATION: Organizing Strings of Sounds 320

SPEECH PERCEPTION AND THE BRAIN 323
Cortical Location of Speech Perception 323
Experience-Dependent Plasticity 324

SOMETHING TO CONSIDER: SPEECH PERCEPTION AND ACTION 324

PERCEIVING DETAILS 334
METHOD: Measuring Tactile Acuity 335
Receptor Mechanisms for Tactile Acuity 335
DEMONSTRATION: Comparing Two-Point Thresholds 335
Cortical Mechanisms for Tactile Acuity 336

PERCEIVING VIBRATION 337

PERCEIVING TEXTURE 338
DEMONSTRATION: Perceiving Texture With a Pen 339

PERCEIVING OBJECTS 340
DEMONSTRATION: Identifying Objects 340
Identifying Objects by Haptic Exploration 340
The Physiology of Tactile Object Perception 341

PAIN 343
Questioning the Direct Pathway Model of Pain 343
The Gate Control Model 345
Cognition and Pain 345
The Brain and Pain 346

SOMETHING TO CONSIDER: PAIN IN SOCIAL SITUATIONS 349

The Chemical Senses 355

THE OLFACTORY SYSTEM 356
Functions of Olfaction 356
Detecting Odors 357
METHOD: Measuring the Detection Threshold 357
Identifying Odors 358
DEMONSTRATION: Naming and Odor Identification 358
The Puzzle of Olfactory Quality 358

THE NEURAL CODE FOR OLFACTORY QUALITY 359
The Olfactory Mucosa 359
Olfactory Receptor Neurons 359

The Cutaneous Senses 329

OVERVIEW OF THE CUTANEOUS SYSTEM 330
The Skin 330
Mechanoreceptors 331
Pathways From Skin to Cortex 331
Maps of the Body on the Cortex 332
The Plasticity of Cortical Body Maps 333

SOMETHING TO CONSIDER: SPEECH PERCEPTION AND ACTION 324

If You Want to Know More 330

Key Terms 351
Media Resources 351
Activating Olfactory Receptor Neurons 361
METHOD: Calcium Imaging 361
Activating the Olfactory Bulb 361
METHOD: Optical Imaging 362
METHOD: 2-Deoxyglucose Technique 362
HIGHER-ORDER OLFACTORY PROCESSING 364
Olfaction in the Environment 364
The Physiology of Higher-Order Processing 365
TEST YOURSELF 15.1 366
THE TASTE SYSTEM 366
Functions of Taste 366
Basic Taste Qualities 367
THE NEURAL CODE FOR TASTE QUALITY 367
Structure of the Taste System 367
Distributed Coding 369
Specificity Coding 370
THE PERCEPTION OF FLAVOR 372
Flavor = Taste + Olfaction 373
DEMONSTRATION: “Tasting” With and Without the Nose 373
The Physiology of Flavor Perception 373
SOMETHING TO CONSIDER: INDIVIDUAL DIFFERENCES IN TASTING 374
TEST YOURSELF 15.2 376
Think About It 376
If You Want to Know More 376
Key Terms 377
Media Resources 377
VIRTUAL LAB 377
PERCEIVING FACES 387
Recognizing Their Mother’s Face 387
Is There a Special Mechanism for Perceiving Faces? 388
TEST YOURSELF 16.1 389
PERCEIVING OBJECT UNITY 389
HEARING 391
Threshold for Hearing a Tone 391
Recognizing Their Mother’s Voice 391
PERCEIVING SPEECH 392
The Categorical Perception of Phonemes 393
Experience and Speech Perception 394
INTERMODAL PERCEPTION 394
OLFACTION AND TASTE 395
SOMETHING TO CONSIDER: THE UNITY OF PERCEPTION 396
METHOD: Paired Comparison 396
TEST YOURSELF 16.2 397
Think About It 397
If You Want to Know More 398
Key Terms 399
Media Resources 399
VIRTUAL LAB 399
APPENDIX
Signal Detection Theory 401
A SIGNAL DETECTION EXPERIMENT 401
SIGNAL DETECTION THEORY 403
Signal and Noise 403
Probability Distributions 404
The Criterion 404
The Effect of Sensitivity on the ROC Curve 405
Glossary 407
References 425
Name Index 443
Subject Index 449