ARIZONA STATE LINIVERSITY
GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:
Copy and paste current course information from Class Search/Course Calalog.

Coliege/School Herberger Institute for Design and the Arts Department Arts, Media + Engineering
Prefix ame Number 230 ~ Title Programming for Media Arts Uinits: 3
Is this a cross-listed course? No Hoyves, please identify course(s)

Is this a shared course? No If so, list all academic units ()1‘1'01‘1‘1@9 this course

ofﬂam lhe COUFSEe IS requn'ed for each desrgnarron r'ecn.rested. By .submmmg this ferler (){ support the chair/director agrees
to ensure that all faculty teaching the course are awgre of the General Studies designation(s) and will teach the course ina
manner that meets the criteria for each approved designation.

Is this a permanent numbered No
course with topics?
I yes, all topics under this permanent numbered course must be laught in a manner Chair/Director Initials

rhat meets the criteria for the approved designation{s). It is the responsibility of the
chair/director to ensure that all faculry teaching the course are aware of the General
Studies designation(s} and adhere to the above guidelines. (Required)
Course description: Introductory-level course in practical aspects of programming systems for media arts. Explores
techniques in programming in the context of images, sounds, interaction, networking and data visualization. Uses
the processing programming language, an accessible yet powerful environment for learm’ng how to program.
Students create images, animations and interactive Programs, and learn how to use images, movies, sound files,
microphones and cameras in their programs.

Requested designation: Mathematical Studies-CS Mandatory Review: Yes

Note- a separate proposal is required for each designation.

Eligibility:
Permanent numbered courses must have completed the university's review and approval process,
For the rules governing approval of omnibus courses, contact Phyvllis.Lucicifasu.edu.

Subnpission deadlines dates are as follow:
For Fall 2016 Effective Date: October 1, 2045 For Spring 2017 Effective Dave: March 10, 2016
Area(s) proposed course will serve:
A single course may be proposed for more than one core or awareness area. A course may satisfy a core arca
requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two
core areas simultaneously, even il approved Tor those areas. With departmental consent, an approved General Studies
course may be counted toward both the General Studies reguirement and the major program of study.
Checlklists for general studies designations:
Complete and attacl: the appropriate checklist
e Literacy and Critical nauiry core courses (1.}
« Mathematics core courses (MA)
« Compuler/statistics/quantitative applications core courses (CS)
o Humanities, Arts and Design core courses (HiN
« Sgcial-Behavioral Sciences core courses (S3)
« Natural Sciences core courses (SQ/56G3
« Cultural Diversity in the Unired States courses (C)
= Global Awareness courses ()
= Historical Awareness courses (H)
A complete proposal should include:
K Signed cousrse proposal cover form
B Criteria cheeklist for General Studies designation(s) being requested
2] Course catalog description
B sample syllabus for the course
B Copy of table of contents from the textbook and list of required readings/books
B ks respectfully reguested that proposals ave submitied elecoronically with all files compdied into opne P13

Contact information:

althea.pergakis
Name Althea Pergakis E-mail @asu.edu ~ Phone 480.965,1010
Department Chair/Director approval: wequired)
Chair/IHrector name {Typed): _Xin Wei Sha . Date:

Rev. 4/2015

S

// ARIZONA STATE UNIVERSITY,

Chair/Director (Signature): ////) /(Ny \ A /@,..4!
7 u g 07 i o Vv

Rev. 4/2015

Arizona State University Criteria Checklist for
MATHEMATICAL STUDIES [CS]

Rationale and Objectives

The Mathematical Studies requirement is intended to ensure that students have skill in basic mathematics,
can use mathematical analysis in their chosen fields, and can understand how computers can make
mathematical analysis more powerful and efficient. The Mathematical Studies requirement is completed
by satisfying both the Mathematics |[MA] requirement and the Computer/Statistics/Quantitative
Applications [CS] requirement explained below,

The Mathematics [MA] requirement, which ensures the acquisition of essential skill in basic mathematics,
reguires the student to complete a course in College Mathematics, College Algebra, or Pre-calculus; or
demonstrate a higher level of skill by completing a mathematics course for which a course in the above
three categories is a prerequisite,

The Computer/Statistics/Quantitative Applications [CS] requirement, which ensures skill in real world -
problem solving and analysis, requires the student to complete a course that uses some combination of

computers, statistics, and/or mathematics.* Computer usage is encouraged but not required in statistics and

quantitative applications courses. At a minimum, such courses should include multiple demonstrations of

how computers can be used to perform the analyses more efficiently.

*CS does not stand for computer science in this context; the “S” stands for statistics. Courses in computer
science must meet the criteria stated for CS courses.

Revised April 2014

Mathematics [CS]
Page2

Proposer: Please complete the following section and attach appropriate documentation.

S

. A'C_OMP:UTER/STATI_STICS/QUANT]TATIVE APPLICATIONS [CS] COURSE

- MUST SATISFY ONE OF -TIEE FOLLOWING CRITERIA: 1,2,0R3

1. Computer applications*: courses must satisfy both a and b:

a. Course involves the use of computer programming
languages or software programs for quantitative syllabus
analysis, algorithmic design, modeling, simulation,
animation, or statistics.

<
L]

b. Course requires students to analyze and implement
procedures that are applicable to at least one of the
following problem domains (check those applicable):

i Spreadsheet analysis, systems analysis and design,
and decision support systems,

L]
X<

% D i Graphic/artistic design using computers. syllabus
iii. Music design using computer software.

Modeling, making extensive use of computer
simulation.

HEREEEN
X

N v Statistics studies stressing the use of computer
AN software.
VA D vi. Algorithmic design and computational thinking. syllabus

“The computer applications requirement cannot be satisfied by a course, the content of which is
restricted primarily to word processing or report preparation skills, the study of the social impact of
computers, ot methodologies to select software packages for specific applications. Courses that emphasize
the use of a computer software package are acceptable only if students are required to understand, at an
appropriate level, the theoretical principles embodied in the operation of the software and are required to
construct, test, and implement procedures that use the software to accomplish taslks in the applicable
problem domains. Courses that involve the learning of a computer programming language are acceptable
only if they also include a substantial introduction to applications to one of the listed problem domains.

Mathematics [CS]

Page 3

YES.

Y| Tdentify

Documentation

Submit_ted_

2 St‘ltlstlcal appllcatlons courses must satlsfy a, b, and ¢,

.of all of the followmg

nowledge in statlstlcaiﬁ;nference and mcIude coverage

Des;gn 01‘ a stai.lstlcal study

S 'M_ethods"dfsarﬁ]ii.iﬁ.g. . ;

i 1V Standald probability models.

HypotheSlS esting. s

Regression or-correlation-analysis, .~ i

R out ihe analyms is not required.

ysns mdre efﬁcléntly, 1f use of computers to cau y o BTN

Mathematics |CS]

Page 4
1dentify

YES | NO Documentation
Submitted

3. Quantitative applications: courses must satisfy a, b, and c:.

Course has a minimum mathematical pretrequisite of

X

how computers can be used to perform the above
applications more efficiently, if use of computers is not

a.

[:' Eﬂ College Mathematics, College Algebra, or Pre-calculus,
or a coutse already approved as satisfying the MA
requirement.

b. ‘The course must be focused principally on the use of
mathematical models in quantitative analysis and
decision making. Examples of such models are;

D }VA i. Linear programming.

I:’ »14 il Goal programming,.

i:l }X‘ iii, Integer programming.

D K‘ iv. Inventory models.

Ij IE V. Decision theory.

l:l & vi, Simulation and Monte Carlo methods,

D vii. Other (explanation must be attached).

¢. The course must include multiple demonstrations of

required by students.

Mathematics |CS]

Page 5
Course Prefix Number Title General Studies
Designation
AME 230 Programming for Media Arts

Explain in detail which student activities correspond to the speeific designation criteria.
Please use the following organizer (o explain how the eriteria are being met.

Fhow course

&y

1A Teaches the programming See highlighted sections in syllabus under
lanuage Processing for "overview" and "course objectives”
animation, algorithmic design
and interactive media works

1Bii Uses programming {o create see highlighted section in "course objectives" and
medig art via interactitivy, the course outline

animation and basic
computational drawing
techniques

1Bvi Uses Processing to design ‘| see course outline
algorithmically and to create
foundations of computational
thinking

ARIZONASTATE
LINIVERSITY

SET
Althea Pergakis

s, @
: | class search &
{wtgng search

7

course catalog
& class search bbbl

Term . Spring 2016 ¥ ! . images, sounds, interaction. networking and daia visuaiization. Uses the processing programming language, an accessible ve! gowerful environment for learing how

Search | Course catalc & |

L: programs.

AME Num
Subject i
230 . | Enroliment requirements: Credit is aliowed for oniy AME 230 or AME 294 (Programming for Mediz Arts)
Level &5
: R Units: 3
Gen Studies | ¢‘} R TR s
e ee— 1 Repeatable for credit: No

; General Studies: No
Keywords B L T LT T R LT RE
SRR : Offered by: Herberger Institute for D

Clear

sdvancad Search

Class meeting details

AME 230 - Programming for the Media Arts

. Course description: Introductory-level course in practical aspects of programming systems for media ars. Explores technigues in programming in the consext of

- to program. Students create images. animations and interactive programs. and learn how to use images, movies, sound files, microphones and cameras in their

Class #: Days: Start: End:
28193 MW 10:30 AM 11:45 AM

Location:

Tempe - STAUFB12S

instructor:

Olson

Seats open:

* | Additional class details

. . Component: Integrated Lecture/Lab
. Session: Session C
P Dates: 1/11/20616 - 4/2%/2016

Lo instruction Mode: In-Person
| . Fees: None

C Books:
e

View books for this diass

AME 230 - Programming for Media Arts

School of Arts, Media and Engineering
Herberger Institute for Design and the Arts
Spring 2016. Monday, Wednesday 10:30 am - 11:45 am, Stauffer B125

Instructor: Loren Olson, loren.olson@asu.edu
Office: Stauffer B260
Office Hours: MW 3-4pm, TTh 1-2pm, or by appointment

Teaching Assistant: Courtney Brown, courtney.d.brown@asu.edu
Office: DC Lab
Office Hours: MW 12-1p

Teaching Assistant: Prashanth Seshasayee, spseshas@asu.edu
Office: Stauffer B204
Office Hours: MW 9-10am

This syllabus is subject to change.

Overview

Computing is everywhere. However, not that long ago, computing was something only found in a large
institutional machine room. Today it is ubiquitous, integrated into devices we use throughout the day.
It's not surprising that there are now a wide range of jobs/professions that include programming work.
As computing spreads, the range of programming tasks has also increased in variety.

Programming is more than a job skill. Programming can actually be a fun activity, a creative outlet,
and a way to express abstract ideas in a tangible form. [The goal of ;his_c@;.sws@ to teach_xo_t.l_ how to
‘program. A natural outcome of learning how to program, is learning a lot more about computing, and
how a computer works. Designing programs also helps to develop a vﬁety of valuable skills: critical
reading, analytical thinking, creative synthesis, and attention to detail.

If computing has become ubiquitous, and programming so varied, what kind of programs should we
teach you how to make? Aren't they all different? Some people want to add interaction to a web page,
others want to make a script to automate a complex modeling task in a 3d animation system, others
want to create a Xbox console game, others want to make an app for iPhone. What should we choose
for learning how to program?

We will use Processing. Processing is an open source project, that is freely available for Windows, Mac,
and Linux. It is very accessible, so it is easy to get started with, and has relatively few distractions and
hurdles for new programmers. Yet Processing is still a powerful programming environment that can
create complex, novel and interesting programs.

The goal will be to teach programming using Processing. Not to teach you “just Processing.” Our goal is
that you leave the class understanding how to program. Once you have learned how to program (using
Processing), you will be ready to easily move on to other horizons if you so desire, whether that be for
programs for web pages (javascript), 3d animation systems (python), Xbox (C# or C++), iPhone or
iPad (Swift, Objective-C) or any other platform.

Course Objectives

JUnderstand the elements and structure of computer programs.

Understand and use common programming elements.

Analyze, break down, and solve a computing problem by creating a program.
Use, control and synthesize common media types algorithmically.
Understand interactive, event driven programming environments.

By the end of this course, students will be able to:
e Create a complex program using the Processing programming language.
e Create a dynamic, interactive Processing sketch.
‘e Use various media types in an interactive Processing sketch including images, movies, and
sound e
¢ Use object oriented programming techniques to develop flexible, extensible interactive
Processing sketches.

’

Spring 2016 Important Dates

January 11 First Day of Class

January 17 Drop/Add Deadline

January 18 Martin Luther King, Jr. Holiday Observed -
University Closed

January 24 Tuition & Fees 100% Refund Deadline

March 6-13 Spring Break

April 3 : Course Withdrawal Deadline

April 29 Complete Session Withdrawal Deadline

April 29 Last Day of Classes

May 2, (Monday) 9:50-11:40am Final Exam

Evaluation
- 60% Assignments

Assignments will involve writing a short program using Processing, assignments are turned in using
Critviz. Always check Critviz for updated Assignment information and due dates.

20% Midterm and Final Exam
There will be a midterm exam on Wednesday March 2nd. The final exam will be on Monday May 2nd, at

9:50am,

10% Tests
There will be some in class tests, quizzes or activities,

10% Class Participation, Attendance
There will be a class roster to sign for attendance, it is your responsibility to sign the roster every
class, If you don't sign the roster, you don't get attendance credit.

We will use an online system called Critviz to turn in assignments. Critviz can be found at
http://critviz.com. I will show you how to use the system in class, and we will do an example project
before a “real” assignment is due.

Grading Scale

A+ 97-100%
A 93-96%
A- 90-92%
B+ 87-89%
B 83-86%
B- 80-82%
C+ 77-79%
C 70-78%
D 60-69%
E 0-59%

A curve may be applied to raw scores at the instructor’s discretion.

Classroom Citizenship

Attend class, and pay attention. Participate in class discussion. Be curious, Be open to working hard
and trying new things. Speak up. If you have a burning questions that you think is too simple to ask, it
probably means several other people have the same guestion.

Be courteous to your fellow classmates, teaching assistant and teacher. Help us to create a positive

and constructive learning environment that encourages everyone, Any disruptive behavior will be dealt
with according to ASU policy. Please see the Student Services Manual for more details.

Academic Integrity. All necessary and appropriate sanctions will be issued to all parties involved with
plagiarizing any and all course work. Plagiarism and any other form of academic dishonesty that is in
violation with the Student Code of Conduct will not be tolerated. For more informaticon, please see the
ASU Student Academic Integrity Policy:__Student Academic Integrity Policy

Regarding plagiarism, code sharing and code reuse.

Is writing code like solving an equation in Calculus or is it more like writing an essay in English? If two
students in English turn in essays that are nearly identical, it will be flagged as plagiarism. When two
students have identical solutions in Calculus, not a second thought would be given - but everyone
understands that copying answers from a neighbor's paper is cheating. In fact, I think that our projects
should be more closely related to the English class essay, than the Calculus example. When you work
on your project, please keep in mind the essay example - you must write your own unique essay.

What about code you found to help you? (Code at processing.org, or stackoverflow, or github, etc) It
can be ok to use other code in projects. It is critical that you acknowledge that code. You must cite
where the code came from, and what code you have used. {Also on a related note, I should add that
you should never add code to a project that you don't understand. Its critical that you understand code
that you add, it should not be a "black box".) Always cite code in comments, where you use it. Clearly
mark what code is involved, and include a URL, and explanatory text. Failure to cite code in an
assignment will result in an automatic 0 grade.

How much code, and what code is ok to use is also context dependent. Again, think about an English
essay. You would not turn in an essay that consists of two sentences you wrote, then simply quote
another writer for two entire pages of content. That wouldn't be your own essay. In this class, you
cannot copy and paste many lines of code, change a few variable names, then submit the result as
your own work. That would be a coding example of plagiarism.

Attendance and Participation

Students are expected to attend all classes. In the case of absence, please inform the
instructor before the class if possible, and/or after the missed class, Classroom attendance
and participation is 10% of the overall grade. Any student missing more than 2 classes
without formal notes (Dr. Note etc) will fail the course

Religious Accommodations for Students

Students who need to be absent from class due to the observance of a religious holiday or

participate in required religious functions must notify the instructor in writing as far in

advance of the holiday/obligation as possible. Students will need to identify the specific

holiday or ohligatory function to the faculty member. Students will not be penalized for

missing class due to religious obligations/holiday observance. The student should contact

the class instructor to make arrangements for making up tests/assignments within a reasonable time.

Late assignment policy
The concepts, techniques and ideas you learn in this class will be cumulative. They build on each other
as the semester progresses, and you will use all of these things together throughout the semester as

you [earn more about programming. Therefore, it is important for your success to do all assighments in
a timely fashion, in the order that they are given. The important concepts from one assignment will
become foundations for subsequent coursework. If you miss an assignment, or for some reason you
struggle with a particular assignment and do poorty - we want to make sure you don’t miss those
concepts and therefore struggle in future assignments. For this reason, we will accept late assignment
submissions or resubmissions with a late penalty. Work submitted the week after due date is marked
down 15 points. Each further week late means an additional 10 point penalty. Late assignments cannot
be turned in via Critviz, you will need to email them to the Teaching Assistants.

Outline

1.

Regarding programming.

1.1. Whatis programming?

1.2. Where do you find programs? Who programs?

1.3. Viewing Assignment; SXSW talk, Program or Be Programmed (optional book link if you want to know
more), Douglas Rushkoff (talk at SXSW 2010)

1.4. Reading Assignment: Getting Starled, Casey Reas and Ben Fry. Processing.org.

Simple drawing with Processing.

2.1. Processing coordinate system.

2.2. Making a window.

2.3. Basic shapes.

2.4. Color for drawing shapes.

2.5. Reading Assignment: Coordinate System and Shapes, Daniel Shiffman. Processing.org.

2.6. Reading Assignment: Color, Daniel Shiffman. Processing.org.

2.7. APl size, background, rect, ellipse, line, point, ellipseMode, rectMode, stroke, fill, noStroke, noFill.

Introducing the Processing environment.

3.1. The open source project.

3.2. The processing app.

3.3. Processing sketch on disk.

3.4. Documentation.

Interactive Processing sketches.,

4.1. The flow of a sketch.

4.2. Setup and Draw.

4.3, Mouse location.

44. Framerate.

4.5. Mouse clicks and Key presses.

4.6. Reading Assignment: Sefup and Draw.

Variables.
5.1. Variable declaration, assighment.
52. Types.

b.3. Names.

54. System variables.

5.5. Simpie expressions and math.

5.6. Reading Assignment: Variables.

5.7. Reading Assignment: |nfegers. and Floais.
Conditional statements.

6.1. Boolean expressions.

6.2. Relational operators.

6.3. I, else, else if,

6.4. Logical operators.

10.

11.

12.

13.

6.5. Boolean variables.
6.6. Reading Assignment: True and False.
6.7. Reading Assignment; Conditionals 1.
6.8. Reading Assignment: Conditionals 2.
6.9. Reading Assignment: Logical Operators.
Loops.
7.1. lteration.
7.2. While loop.
7.3. Exit conditions.
7.4, Forloop.
7.5, Variable scope.
7.6. Reading Assignment: iteration.
7.7. Reading Assignment: Variable scope.
Functions,
8.1. Organizing code.
8.2. Creating a function.
8.3. Modularity.
8.4. Function parameters.
8.4.1. Pass by value
8.5. Return values.
8.6. Flow in a program with functions.
8.7. Reading Assignment: Eunglions.
Objects.
9.1. Intro to Object Oriented Programming.
9.2. Data and instructions.
9.3. Class as a template.
9.4. Using objects in Processing.
8.5. Creating a class.
9.5.1. Instance variables.
9.5.2. Constructor.
9.53. Methods.
9.6. Reading Assignment: Object Criented Programming, Daniei Shiffman.
Arrays.
10.1. Declaring an array.
10.2. Initializing an array.
10.3. Array operations.
10.4. Reading Assignment: Array.
10.5. Reading Assignment: Array objects.
Algorithms.
11.1. Process of programming.
11.2. Recipes.
11.3. Divide and conquer.
11.4. Reading Assignment: Anatomy of a Program, J David Eisenberg. Processing.org.
Text.
12.1. String class.
12.2. Rendering text.

12.3.

12.2.1. createFont, textFont, text
Reading: Strings and Drawing Tex!, Daniel Shiffman. Processing.org.

Grab bag of technique.

13.1.

Modulus and a lcop trick.

13.2. Probability.
13.3. Perlin noise.
13.4. Angles, radians and polar coordinates.
13.5. Recursion,
13.6. Two dimensional arrays.
14. Transformations.
14.1. Translate, Rotate, Scale.
14.2. Transformation Matrix and pushMatrix/popMatrix.
14.3. Reading Assignment: 2d Transformations, J David Eisenberg. Processing.org.
15. Images.
15.1. Plmage class.
16.2. Animating an image.
18.3. Pixel data and image processing.
15.4. Reading Assignment: Images and Pixels, Daniel Shiffman. Processing.org.
©16. More about text.
16.1. String methods indexOf, substring.
16.2. split, join.
17. . Data visualization,
17.1. loadStrings.
17.2. Parsing a CSV file.
17.3. Creating a data viz graph.
17.4. saveStrings.
17.5. Reading Assignment: Data, Daniel Shiffman. Processing.org.
18. Sound.
18.1. Minim audio library
18.1.1. AudioSample, loadSample, trigger.
18.1.2. AudioPlayer, loadFile, play, pause.
18.1.3. Audiolnput.
18.1.4. AudioRecorder, createRecorder, beginRecord, endRecord, save.
19. Where to go next,

Stauffer Media Lab

The Stauffer Media Lab - Stauffer B135 - is available for all students in this class, weekdays 8am to 8pm. All the computers in
the fab have Processing installed. There may be weekend hours this semester, check the lab to find current hours,

Special Accommodations

To request academic accommeodations due to a disability, please contact the ASU Disability Resource Center
{http://www.asu.edu/studentaffairs/ed/drc/# ; Phone: (480) 965-1234; TDD: (480) 965-9000). This is a very important step
as accommeodations may be difficult to make retroactively. If you have a letter from their office indicating that you have a
disability which requires academic accommodations, in order to assure that you receive your accommodations in a timely
manner, please present this documentation to me no later than the end of the first week of the semester so that your needs
can be addressed effectively.

Reference
This class does not have a required textbook. There will be required readings, usually via the web, at various times during the
semester. If you would like to seek out more information about Programming for Media Arts, and about Processing, here are

some ideas.

Books about Processing. There is a pretty good Processing community of users, and a bunch of books have been
published. These are two that I have read, and thought were good.

Learning Processing, Daniel Shiffman.
Visualizing Data, Ben Fry.

Related Web Sites.
The official Processing web site. http://processing.org. This is where you can download processing, find the reference
documentation and lots of learning resources.

hitp://www.openprocessing.org. A community site, and there are lots of example Processing sketches submitted by many
authors. A great way to learn is to look at a project that you like.

http://benfry.com. Ben Fry is an artist and designer, and the co~inventor of Processing.
http://freas.com. Casey Reas is an artist and professor at UCLA, and the co-inventor of Processing.

httn://www.shiffman.net. Daniel Shiffman is a professor at ITP, and author. He has scrme interesting Processing related work
on his website.

http://www.flong.com. Golan Levin is an artist and professor at Carnegie Mellon University.

http://processingis.ord. Processing.js is a port of Processing to javascript, that runs natively in a web browser,

