

GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:

Copy and paste cu	rrent course information from Class Sear	ch/Course Catalog.	
College/School	College of Liberal Arts and Sciences	Department	School of Human Evolution and Social Change

Prefix ASB Number 394 Title Statistics for Social Scientists Units: 3

Is this a cross-listed course? No If yes, please identify course(s)

Is this a shared course? No If so, list all academic units offering this course

Note- For courses that are crosslisted and/or shared, a letter of support from the chair/director of <u>each</u> department that offers the course is required for <u>each</u> designation requested. By submitting this letter of support, the chair/director agrees to ensure that all faculty teaching the course are aware of the General Studies designation(s) and will teach the course in a manner that meets the criteria for each approved designation.

Is this a permanent numbered course with topics?

No

If yes, all topics under this permanent numbered course must be taught in a manner that meets the criteria for the approved designation(s). It is the responsibility of the chair/director to ensure that all faculty teaching the course are aware of the General Studies designation(s) and adhere to the above guidelines.

Chair/Director Initials

(Required)

Course description:

Requested designation: Mathematical Studies-CS

Mandatory Review: (Choose one)

Note- a separate proposal is required for each designation.

Eligibility:

Permanent numbered courses must have completed the university's review and approval process. For the rules governing approval of omnibus courses, contact Phyllis.Lucie@asu.edu.

Submission deadlines dates are as follow:

For Fall 2016 Effective Date: October 1, 2015

For Spring 2017 Effective Date: March 10, 2016

Area(s) proposed course will serve:

A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas. With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major program of study.

Checklists for general studies designations:

Complete and attach the appropriate checklist

- · Literacy and Critical Inquiry core courses (L)
- Mathematics core courses (MA)
- Computer/statistics/quantitative applications core courses (CS)
- Humanities, Arts and Design core courses (HU)
- Social-Behavioral Sciences core courses (SB)
- Natural Sciences core courses (SQ/SG)
- Cultural Diversity in the United States courses (C)
- Global Awareness courses (G)
- Historical Awareness courses (H)

A complete proposal should include:

- Signed course proposal cover form
- Criteria checklist for General Studies designation(s) being requested
- Course catalog description
- Sample syllabus for the course
 - Copy of table of contents from the textbook and list of required readings/books

It is respectfully requested that proposals are submitted electronically with all files compiled into one PDF. Contact information:

Name	Sara Marsteller	E-m	nail	smarstel@asu.edu	Phone	480-727-6043	
Departm	ent Chair/Dire	ctor appro	val:	(Required)			
Chair/Direc	ctor name (Typed):	Kaye Reed				Date: 1/8/18	
Chair/Direc	ctor (Signature):	Haye	€.	Reed		1/10/18	

Arizona State University Criteria Checklist for

MATHEMATICAL STUDIES [CS]

Rationale and Objectives

The Mathematical Studies requirement is intended to ensure that students have skill in basic mathematics, can use mathematical analysis in their chosen fields, and can understand how computers can make mathematical analysis more powerful and efficient. The Mathematical Studies requirement is completed by satisfying both the Mathematics [MA] requirement and the Computer/Statistics/Quantitative Applications [CS] requirement explained below.

The Mathematics [MA] requirement, which ensures the acquisition of essential skill in basic mathematics, requires the student to complete a course in College Mathematics, College Algebra, or Pre-calculus; or demonstrate a higher level of skill by completing a mathematics course for which a course in the above three categories is a prerequisite.

The Computer/Statistics/Quantitative Applications [CS] requirement, which ensures skill in real world problem solving and analysis, requires the student to complete a course that uses some combination of computers, statistics, and/or mathematics.* Computer usage is encouraged but not required in statistics and quantitative applications courses. At a minimum, such courses should include multiple demonstrations of how computers can be used to perform the analyses more efficiently.

*CS does not stand for computer science in this context; the "S" stands for statistics. Courses in computer science must meet the criteria stated for CS courses.

Revised April 2014

Proposer: Please complete the following section and attach appropriate documentation.

		ASU[CS] CRITERIA	
	A CO	OMPUTER/STATISTICS/QUANTITATIVE APPLICATIONS [MUST SATISFY ONE OF THE FOLLOWING CRITERIA: 1,	
YES	NO		Identify Documentation Submitted
		1. Computer applications*: courses must satisfy both a and b:	
\boxtimes		a. Course involves the use of computer programming languages or software programs for quantitative analysis, algorithmic design, modeling, simulation, animation, or statistics.	syllabus and textbook
		b. Course requires students to analyze and implement procedures that are applicable to at least one of the following problem domains (check those applicable):	syllabus and textbook
\boxtimes		i. Spreadsheet analysis, systems analysis and design, and decision support systems.	syllabus and textbook
		ii. Graphic/artistic design using computers.	
		iii. Music design using computer software.	
		iv. Modeling, making extensive use of computer simulation.	
		v. Statistics studies stressing the use of computer software.	syllabus and textbook
		vi. Algorithmic design and computational thinking.	
restrict compu the use approp constru	ted prin iters, or e of a coriate le- uct, test m doma	er applications requirement cannot be satisfied by a course, the satisfied by a course, the satisfied to word processing or report preparation skills, the study methodologies to select software packages for specific applications. Computer software package are acceptable only if students are requivel, the theoretical principles embodied in the operation of the soft, and implement procedures that use the software to accomplish ins. Courses that involve the learning of a computer programming so include a substantial introduction to applications to one of the lister.	of the social impact of Courses that emphasize ired to understand, at an ware and are required to tasks in the applicable language are acceptable

YES	NO		Identify Documentation Submitted
		2. Statistical applications: courses must satisfy a, b, and c.	
		a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on developing knowledge in statistical inference and include coverage of all of the following:	
		i. Design of a statistical study.	
		ii. Summarization and interpretation of data.	
		iii. Methods of sampling.	
		iv. Standard probability models.	
		v. Statistical estimation	
		vi. Hypothesis testing.	
		vii. Regression or correlation analysis.	
		c. The course must include multiple demonstrations of how computers can be used to perform statistical analysis more efficiently, if use of computers to carry out the analysis is not required.	

YES	NO		Identify Documentation Submitted
		3. Quantitative applications: courses must satisfy a, b, and c:	
		a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on the use of mathematical models in quantitative analysis and decision making. Examples of such models are:	
		i. Linear programming.	
		ii. Goal programming.	
		iii. Integer programming.	
		iv. Inventory models.	
		v. Decision theory.	
		vi. Simulation and Monte Carlo methods.	
		vii. Other (explanation must be attached).	
		c. The course must include multiple demonstrations of how computers can be used to perform the above applications more efficiently, if use of computers is not required by students.	

Mathematics [CS] Page 5

Course Prefix	Number	Title	General Studies Designation
ASB	394	Statistics for Social Scientists	

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

Criteria (from checksheet)	How course meets spirit (contextualize specific examples in next column)	Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)
Ia	Course involves the use of software programs for quantitative analysis and statistics	The course teaches students how to use the software program Microsoft Excel to conduct statistical analysis of quantitative data used in social science research. (textbook and yellow highlights in syllabus)
2b.i	Course requires students to analyze and implement procedures in spreadsheet analysis	Students gain an understanding of statistical analyses used in the social sciences by learning how to apply and interpret statistical techniques using data spreadsheets in Microsoft Excel. (textbook and blue highlights in syllabus)
2b.v	Course requires students to analyze and implement procedures in statistics stressing the use of computer software, specifically Microsoft Excel	Students learn how to use statistical and database software program Microsoft Excel to conduct statististical analyses using examples drawn from the social sciences. (textbook and green highlights in syllabus)

ASB 394 Statistics for Social Scientists - Course Description

In this course, we cover techniques used to analyze quantitative data used in the social sciences. Emphasis will be placed on the basic concepts of quantitative analysis including models used to explore causality, an introduction to multivariate analysis, and the use of excel to perform statistical techniques. The course will focus on understanding, applying, and interpreting statistical techniques, rather on the derivations of methods or performance of calculations. The course also will include a brief introduction to qualitative analysis and software used to analyze qualitative information.

Main Campus PO Box 872402 TEMPE, AZ 85287-2402 TELEPHONE FACSIMILE (480) 965-6213 (480) 965-7671

Note: this syllabus is not a contract. It is subject to further change or revision, to best realize the educational goals of the course. Revisions will be announced in class or in course materials online with appropriate prior notice.

Statistics for Social Scientists
ASB 394
Master Syllabus

Course Meetings: Online (3 credit hours)

Course Description:

In this course, we cover techniques used to analyze quantitative data used in the social sciences. Emphasis will be placed on the basic concepts of quantitative analysis including models used to explore causality, an introduction to multivariate analysis, and the use of excel to perform statistical techniques. The course will focus on understanding, applying, and interpreting statistical techniques, rather on the derivations of methods or performance of calculations. The course also will include a brief introduction to qualitative analysis and software used to analyze qualitative information.

We will use examples from across the social sciences, but with an emphasis on global health, anthropology, and environmental social science.

Course Goals:

- 1) To develop the student's ability to conduct statistical analysis of quantitative data;
- To increase the students' understanding of the appropriate use of analytic techniques in both descriptive and inferential methods, including hypothesis testing;
- To improve the student's ability to interpret statistical results involving univariate and multivariate statistical analysis;
- 4) To develop the student's ability to use statistical and database software such as Excel;
- 5) To improve student's ability to consume statistical information and analysis as required to conduct social scientific analysis (and interpret analyses in academic literature and mainstream media).

Learning Outcomes:

By the end of this course, each student will have demonstrated that they are able to:

- Explain basic statistical findings from media and journal articles
- Pick the appropriate statistics for a study
- Utilize excel to conduct statistical analyses

Required Course Texts/ Readings: Salkind, Neil. 2016. Statistics for People Who (Think They) Hate Statistics Using Microsoft Excel 2016. 4th Edition. Sage Publication.

Course Format:

This is an online course. Students will be reading a textbook, outside readings from academic and media sources, watching videos, and watching lectures. Students will be completing lab assignments, quizzes, and posting in discussion boards.

Coursework

Final grades for the course will be assigned on basis of the following:

Quizzes
Labs
35 pts or 35 %, based on 7 module quizzes
49 pts or 49% based on 7 module labs

Discussion Board Posts
 16% based on 7 module and introduction discussion posts

For your own protection, you should keep a copy of everything you hand in, and you should keep your graded assignments at least until grades are finalized at the end of the semester, and in the event you wish to contest any grades.

Final Grades:

A-/ A/ A+ 89.5-92.4/	/ 92.5-97.4/ 97.5-100	Excellent
B- /B/ B+ 79.5-82.4/	/ 82.5-87.4/ 87.5-89.4	Good
C/ C+ 69.5-77.4/	/ 77.5-79.4	Average
D 59.5-69.4		Passing
E <60		Failure
XE		Failure due to Academic Dishonesty

Extra Credit

There will be extra credit opportunities assigned for this course through extra quiz questions. Additionally there will be a few extra credit opportunities within some of the modules. These are due within the module assigned. No additional extra credit opportunities will be made available.

Incompletes

A mark of "I" (incomplete) is given by the instructor when you have completed most of the course and are otherwise doing acceptable work but are unable to complete the course because of illness or other conditions beyond your control. You are required to arrange with the instructor for the completion of the course requirements. The arrangement must be recorded on the Request for Grade of Incomplete form (http://students.asu.edu/forms/incomplete-grade-request).

Late Assignments

Unexcused late assignments will not be accepted. Excuses for an assignment must be made an approved in advance of the due date of the assignment. Requests for excuses must be written, either on paper or email, and approval must be obtained, either by an email reply or by having the paper excuse signed. In order to get credit, with the late assignment you must turn in a copy of the email approval or signed written excuse.

Grade Appeals

ASU has formal and informal channels to appeal a grade. If you wish to appeal any grading decisions, please see http://catalog.asu.edu/appeal.

Course Policies

This is an online course; please be courteous to your classmates and the instructor. All discussion posts should be written in a formal academic style.

Student Standards

Students are required to read and act in accordance with university and Arizona Board of Regents policies, including:

The ABOR Code of Conduct: Arizona Board of Regents Policies 5-301 through 5-308: https://students.asu.edu/srr

Policy against threatening behavior

All incidents and allegations of violent or threatening conduct by an ASU student (whether on-or off campus) must be reported to the ASU Police Department (ASU PD) and the Office of the Dean of Students. If either office determines that the behavior poses or has posed a serious threat to personal safety or to the welfare of the campus, the student will not be permitted to return to campus or reside in any ASU residence hall until an appropriate threat assessment has been completed and, if necessary,

conditions for return are imposed. ASU PD, the Office of the Dean of Students, and other appropriate offices will coordinate the assessment in light of the relevant circumstances.

If you have any questions, please refer to <u>ACD-304-10 Course Syllabus</u> or contact P.F. Lengel or Jenny Smith in the CLAS Dean's Office at (480) 965-6506.

Academic Integrity

Academic honesty is expected of all students in all examinations, papers, laboratory work, academic transactions and records. The possible sanctions include, but are not limited to, appropriate grade penalties, course failure (indicated on the transcript as a grade of E), course failure due to academic dishonesty (indicated on the transcript as a grade of XE), loss of registration privileges, disqualification and dismissal. For more information, see http://provost.asu.edu/academicintegrity.

If you fail to meet the standards of academic integrity in any of the criteria listed on the university policy website, sanctions will be imposed by the instructor, school, and/or dean. Academic dishonesty includes borrowing ideas without proper citation, copying others' work (including information posted on the internet), and failing to turn in your own work for group projects. Please be aware that if you follow an argument closely, even if it is not directly quoted, you must provide a citation to the publication, including the author, date and page number. If you directly quote a source, you must use quotation marks and provide the same sort of citation for each quoted sentence or phrase. You may work with other students on assignments, however, all writing that you turn in must be done independently. If you have any doubt about whether the form of cooperation you contemplate is acceptable, ask the TA or the instructor in advance of turning in an assignment. Please be aware that the work of all students submitted electronically can be scanned using SafeAssignment, which compares them against everything posted on the internet, online article/paper databases, newspapers and magazines, and papers submitted by other students (including yourself if submitted for a previous class).

Note: Turning in an assignment (all or in part) that you completed for a previous class is considered self-plagiarism and falls under these guidelines. Any infractions of self-plagiarism are subject to the same penalties as copying someone else's work without proper citations. Students who have taken this class previously and would like to use the work from previous assignments should contact the instructor for permission to do so.

Prohibition of Commercial Note Taking Services

In accordance with <u>ACD 304-06 Commercial Note Taking Services</u>, written permission must be secured from the official instructor of the class in order to sell the instructor's oral communication in the form of notes. Notes must have the notetaker's name as well as the instructor's name, the course number, and the date.

Student Support and Disability Accommodations

In compliance with the Rehabilitation Act of 1973, Section 504, and the Americans with Disabilities Act of 1990, professional disability specialists and support staff at the Disability Resource Center (DRC) facilitate a comprehensive range of academic support services and accommodations for qualified students with disabilities.

Qualified students with disabilities may be eligible to receive academic support services and accommodations. Eligibility is based on qualifying disability documentation and assessment of individual need. Students who believe they have a current and essential need for disability accommodations are responsible for requesting accommodations and providing qualifying documentation to the DRC. Every effort is made to provide reasonable accommodations for qualified students with disabilities. Qualified students who wish to request an accommodation for a disability should contact their campus DRC at: http://www.asu.edu/studentaffairs/ed/drc/

If you are a student in need of special arrangements for we will do all we can to help, based on the recommendations of these services. For the sake of equity for all students, we cannot make any accommodations without formal guidance from these services.

Drop and Add Dates/Withdrawals

Please refer to the <u>academic calendar</u> on the deadlines to drop/withdraw from this course. Consult with your advisor and notify your instructor if you are going to drop/withdraw this course. If you are considering a withdrawal, review the following ASU policies: <u>Withdrawal from Classes</u>, <u>Medical/Compassionate</u> Withdrawal and <u>Drop/Add and Withdraw</u>.

Email Communications

All email communication for this class will be done through your ASU email account. Your email communications should be <u>professional</u> and succinct. You should be in the habit of checking your ASU email regularly as you will not only receive important information about your class(es), but other important university updates and information. You are solely responsible for reading and responding if necessary to any information communicated via email. For help with your email contact the <u>help desk</u>.

Campus Resources

As an ASU student you have access to many resources on campus. This includes tutoring, academic success coaching, counseling services, financial aid, disability resources, career and internship help and many opportunities to get involved in student clubs and organizations.

- Tutoring: http://studentsuccess.asu.edu/frontpage
- Counseling Services: http://students.asu.edu/counseling
- Financial Aid: http://students.asu.edu/financialaid
- Disability Resource Center: http://www.asu.edu/studentaffairs/ed/drc/
- Major/Career Exploration: http://uc.asu.edu/majorexploration/assessment
- Career Services: http://students.asu.edu/career
- Student Organizations: http://www.asu.edu/studentaffairs/mu/clubs/

For more information about the School of Human Evolution and Social Change, including our degree programs, research opportunities and advising information, please go to: http://shesc.asu.edu/undergraduate/undergraduate-studies. Our advisors are always willing to discuss career and guidance options with you.

Notes on Letters of Recommendation:

Please be aware that I receive many requests from students to write letters of recommendation and therefore have set down these guidelines. Students should only request a letter of recommendation if s/he meets the following minimum criteria.

- Has taken more than one in-person (upper-division) class with me if it is lecture, or have taken
 one intensive smaller class such as a seminar, lab, or practicum class with me (note: I do not
 write letters for students who take online classes with me)
- Received A or A+ in a 300 or 400 level cours(es) taken me
- Has spoken with me directly outside of class about career/academic goals

Note that if you meet these minimums it doesn't mean that I will agree to write you a letter. When asking for a letter of recommendation you MUST allow *more than two weeks* notice and provide me with the following. Everything listed here must be in *one* email.

- Unofficial Transcript
- Resume or CV

- Any application materials that are pertinent (e.g. personal statement/statement of purpose; answers to application questions; scholarship/job description; a paragraph stating why you are applying for X if you don't have a personal statement/answers to application questions; etc.).
- The information of to whom and where the letter is to be sent (e.g. email address or if it needs to be sent via the US Postal Service you must provide me with a stamped and addressed envelope).
- Clearly stated deadline of when the letter is due.

If I agree to write a letter of recommendation I will only be able to summarize your academic performance in my class(es) and will not be able to speak to any factors that have not been accessed in class. Lastly, if I agree to write you a letter, *you agree* to the following.

- You will let me know the outcome. This is important to me as I will want to know what is happening with you and to keep track of any positive outcomes. Also, this means a lot to me (and anyone else you request letters from).
- You agree to check with me before putting my name down on any subsequent applications (don't just assume you can keep putting my name down if I have only agreed to write one letter for you).

Schedule of Readings and Assignments

In each of the modules there are quizzes, labs, and discussion board assignments. These are due at the end of the module by 11:59 pm.

	Due Date	Discussion Posts	Labs	Quiz	Points
Introduction	8/25/17	2			2
Module 1	8/25/17	2	7	5	14
Module 2	9/1/17	2	7	5	14
Module 3	9/8/17	2	7	5	14
Module 4	9/15/17	2	7	5	14
Module 5	9/22/17	2	7	5	14
Module 6	9/29/17	2	7	5	14
Module 7	10/6/17	2	7	5	14
	Totals	16	49	35	100

Citations for Assigned and Outside Readings

When citing assigned or outside readings in discussion board posts use APA style. Bibliographic information should be included at the end of the post or assignment.

Statistics for People Who (Think They) Hate Statistics

Using Microsoft Excel 2016 o 4th Edition

Neil J. Salkind

Los Angeles (London | New Dehi Singapore | Washington DC | Melbourne

FOR INFORMATION:

SAGE Publications, Inc. 2455 Teller Road Thousand Oaks, California 91320 E-mail: order@sagepub.com

SAGE Publications Ltd. 1 Oliver's Yard 55 City Road London EC1Y 1SP United Kingdom

SAGE Publications India Pvt. Ltd.
B 1/I 1 Mohan Cooperative Industrial Area
Mathura Road, New Dahi 110 044
India

SAGE Publications Asia-Pacific Pte. Ltd. 3 Church Street #10-04 Samsung Hub Singapore 049483

Acquisitions Editor: Heten Salmon
Editorial Assistant: Yvonne McDuffee
eLearning Editor: Katie Ancheta
Production Editor: Libby Larson
Copy Editor: Paula Fleming
Typesetter: C&M Digitals (P) Ltd.

Proofreader: Scott Oney Indexer: Will Ragsdale

Cover Designer: Candice Harman Marketing Manager: Susannah Goldes Copyright @ 2017 by SAGE Publications, Inc.

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All trademarks depicted within this book, including trademarks appearing as part of a screenshot, figure, or other image are included solely for the purpose of illustration and are the property of their respective holders. The use of the trademarks in no way indicates any relationship with, or endorsement by, the holders of said trademarks. SPSS is a registered trademark of International Business Machines Corporation.

Library of Congress Cataloging-in-Publication Data

Names: Salkind, Neil J., author.

Title: Statistics for people who (think they) hate statistics: Using Microsoft Excel 2016 / Neil J. Salkind, University of Kansas.

Description: 4 edition. | Los Angeles: SAGE, [2017] | locludes index.

Identifiers: LCCN 2015040053 |

ISBN 978-1-4833-7408-6 (pbk.: alk. paper)

Subjects: LCSH: Statistics. | Microsoft Excel

Computer file)

Classification: LCC HA29 .S23652 2017 | DDC 519.5 -- dc23 LC record available at http://lccn.loc.

gov/2015040053

This book is printed on acid-free paper.

16 17 18 19 20 10 9 8 7 6 5 4 3 2 1

BRIEF CONTENTS

A Note to the Student: Why I Wrote This Book	XXII
And a (Little) Note to the Instructor	xxiv
Acknowledgments	XXV
And Now, About the Fourth Edition	XXVI
About the Author	xxix
PART I	
Yippee! I'm in Statistics	1
L. Statistics or Sadistics? It's Up to You	- 5
Little Chapter 1a. All You Need to Know About Formulas and Functions	21
About Using the Amazing Analysis Tools	40
Little Chapter 1c. For Mac Lovers Who Are Still Using Version 2011: Rejoice!! And, for Mac Lovers Who Are New to Version 2016, Rejoice More!!!	44
PART II	
Σigma Freud and Descriptive Statistics	49
Computing and Understanding Averages: Means to an End	-51
3. Vive la Différence: Understanding Variability	79
4 A Picture Really Is Worth a Thousand Words	96

5,	Ice Cream and Crime: Computing	127
	Correlation Coefficients	127
6.	Just the Truth: An Introduction to Understanding Reliability and Validity	154
	PART III	
Tak	ing Chances for Fun and Profit	177
7.	Hypotheticals and You: Testing Your Questions	179
8.	Are Your Curves Normal? Probability and Why It Counts	194
	PART IV	£
Sign	nificantly Different: Using Inferential Statistics	219
9.	Significantly Significant: What It Means for You and Me	221
10.	Only the Lonely: The One-Sample Z-Test	240
11.	t(ea) for Two: Tests Between the Means of Different Groups	251
12.	t(ea) for Two (Again): Tests Between the Means of Related Groups	270
13.	Two Groups Too Many? Try Analysis of Variance	285
14.	Two Too Many Factors: Factorial Analysis of Variance—A Brief Introduction	303
15.	Cousins or Just Good Friends? Testing Relationships Using the Correlation Coefficient	318
16.	Predicting Who'll Win the Super Bowl: Using Linear Regression	328
17.	What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests	351
18.	Some Other (Important) Statistical Procedures You Should Know About	364

19. A Statistical Software Sampler	372
20. (Mini) Data Mining: A Introduction to Getting	
the Most Out of Your BIG Data	381
PART V	
Ten Things You'll Want to Know and Remember	395
21. The Ten (or More) Best (and Most Fun) Internet	
22. The Ten Commandments of Data Collection	307
Appendix A: Excel-erate Your Learning:	406
Appendix B: Tables	412
Appendix C: Data Sets	428
Appendix D: Answers to Practice Questions	453
Appendix E: Math: Just the Basics	489
Appendix F: The Reward: The Brownie Recipe	
	494
Glossary	494 496

DETAILED CONTENTS

A Note to the Student: Why I Wrote This Book	xxii
And a (Little) Note to the Instructor	xxiv
Acknowledgments	XXV
And Now, About the Fourth Edition	XXVi
About the Author	xxix
PART I	
Yippee! I'm in Statistics	1
1. Statistics or Sadistics? It's Up to You	5
Why Statistics?	5
And Why Excel?	6
A 5-Minute History of Statistics	- 6
Statistics: What It Is (and Isn't)	- 8
What Are Descriptive Statistics?	- 9
What Are Inferential Statistics?	10
In Other Words	11
Tooling Around With the	
Data Analysis Tools	11
What Am I Doing in a Statistics Class?	12
Ten Ways to Use This Book (and Learn	
Statistics at the Same Time!)	14
* Icons	16
Key to Difficulty Icons	17
Key to "How Much Excel" Icons	18
Glossary	18
Summary	18
Time to Practice	10
Little Chapter 1a. All You Need to Know	
About Formulas and Functions	21
What's a Formula?	21
Creating a Formula	22

Operator, Operator—Get Me a Formula!	24
Beware the Parentheses	24
What's a Function?	25
Using a Function	26
Using Functions in Formulas	32
We're Taking Names: Naming Ranges	33
Using Ranges	35 37
Real-World Stats	37
Summary	37
Time to Practice	37
Little Chapter 1b. All You Need to Know About	
Using the Amazing Data Analysis Tools	40 41
A Look at the Data Analysis Tools	41
Don't Have It? (Installation Again!)	43
Little Chapter 1c. For Mac Lövers Who Are Still	
Using Version 2011: Rejoice!! And, for Mac Lovers	
Who Are New to Version 2016, Rejoice More!!!	44
A Mac Alternative to the Data Analysis Tools	44
Getting Started With StatPlus	45
Computing Descriptive Statistics	45
Options and Preferences	45 47
What StatPlus Can Do	47
PART II	
<u>Σigma Freud and Descriptive Statistics</u>	49
2. Computing and Understanding Averages:	
Means to an End	51
Computing the Mean	52
And Now Using Excel's AVERAGE Function	53
Computing a Weighted Mean	57
Computing the Median	59
And Now Using Excel's MEDIAN Function	61
Computing the Mode	64
And Now Using Excel's MODE SNGL Function	<u>65</u>
Apple Pie à la Bimodal	67
And Now Using Excel's	
MODE MULT Function	_68
Using the Amazing Data Analysis	
Tools to Compute Descriptive Statistics	69
Make the Data Analysis Tools Output Pretty	73
When to Use What	74

	Real-World Stats	
	Summary	76
	Time to Practice	76
3.	Vive la Différence: Understanding Variability	79
10.0	Why Understanding Variability Is Important	79
	Computing the Range	80
	Computing the Standard Deviation	82
	And Now Using Excel's STDEV.S Function	84
	Why n - 1? What's Wrong With Just n?	86
	What's the Big Deal?	88
100	Computing the Variance	89
	And Now Using Excel's VAR.S Function	89
	The Standard Deviation Versus the Variance	91
	Using the Amazing Data Analysis Tools (Again!)	92
	Real-World Stats	92
	Summary	93
	Time to Practice	93
4.	A Picture Really Is Worth a Thousand Words	96
	Why Illustrate Data?	96
	Ten Ways to a Great Figure (Eat Less and	
	Exercise More?)	97
	First Things First: Creating a Frequency Distribution	98
	The Classiest of Intervals	99
	The Plot Thickens: Creating a Histogram	100
	The Tally-Ho Method	102
	Using the Amazing Data Analysis Tools	
	to Create a Histogram	103
	The Next Step: A Frequency Polygon	106
	Cumulating Frequencies	108
	Fat and Skinny Frequency Distributions	109
	Average Value	110
	Variability	110
	Skewness	111
	Kurtosis	112
	Excel-lent Charts	114
	Your First Excel Chart: A Moment to	
	Remember (Sigh)	115
	Excel-lent Charts Part Deux: Making Charts Pretty	117
	Other Cool Charts	123
	Bar Charts	123
	Line Charts	123
	Pie Charts	124
	Real-World Stats	125
	Summary	125
	Time to Practice	126

5. Ice Cream and Crime: Computing	
Correlation Coefficients	127
What Are Correlations All About?	127
Types of Correlation Coefficients:	
Flavor 1 and Flavor 2	128
Computing a Simple Correlation Coefficient	131
And Now Using Excel's CORREL Function	n 133
A Visual Picture of a Correlation:	
The Scatterplot	134
Using Excel to Create a Scatterplot	138
Bunches of Correlations:	
The Correlation Matrix	140
More Excel—Bunches of Correlations à la Excel	140
Using the Amazing Data Analysis Tools to Compu-	te
Correlations	141
Understanding What the Correlation	
Coefficient Means	144
Using-Your-Thumb Rule	144
A Determined Effort: Squaring the Correlatio	n
Coefficient	145
As More Ice Cream Is Eaten, the Crime Rate	
Goes Up (or Association Versus Causality)	147
Other Cool Correlations	148
Real-World Stats	149
Summary	150
Time to Practice	150
6. Just the Truth: An Introduction to	154
Understanding Reliability and Validity	154
An Introduction to Reliability and Validity	154
What's Up With This Measurement Stuff?	155
All About Measurement Scales	156
A Rose by Any Other Name:	1.67
The Nominal Level of Measurement	157
Any Order Is Fine With Me: The Ordinal	1 - 2
Level of Measurement	157
1 + 1 = 2: The Interval Level of Measurement	157
Can Anyone Have Nothing of Anything?	
The Ratio Level of Measurement	158
In Sum	158
Reliability—Doing It Again Until You Get It Right	
Test Scores—Truth or Dare	159
Observed Score - True Score + Error Score	160
Different Types of Reliability	161
How Big Is Big? Interpreting	
Reliability Coefficients	167

And If You Can't Establish	
Reliability Then What?	167
Just One More Big Thing	168
Validity—Whoa! What Is the Truth?	168
Different Types of Validity	169
And If You Can't Establish Validity Then What?	172
A Last, Friendly Word	173
Validity and Reliability: Really Close Cousins	173
Real-World Stats	174
Summary	175
Time to Practice	175
PART III	
Taking Chances for Fun and Profit	177
7. Hypotheticals and You: Testing Your Questions	179
So You Want to Be a Scientist	179
Samples and Populations	180
The Null Hypothesis	181
The Purposes of the Null Hypothesis	182
The Research Hypothesis	183
The Nondirectional Research Hypothesis	184
The Directional Research Hypothesis	185
Some Differences Between the Null	
Hypothesis and the Research Hypothesis	187
What Makes a Good Hypothesis?	188
Real-World Stats	190
Summary	192
Time to Practice	192
8. Are Your Curves Normal? Probability and	
Why It Counts	194
Why Probability?	194
The Normal Curve (aka the Bell-Shaped Curve)	195
Hey, That's Not Normal!	196
The Central Limit Theorem	108
More Normal Curve 101	200
Our Favorite Standard Score: The 2 Score	203
Using Excel to Compute z Scores	206
What z Scores Represent	209
What 2 Scores Really Represent	213
Hypothesis Testing and z Scores: The First Step	215
Real-World Stats	216
Summary	216
Time to Beauties	217

PART IV

Sign	nificantly Different: Using Inferential Statistics	219
0	Ci-ificanthy Cignificant, What It Moone	
9.	Significantly Significant: What It Means for You and Me	221
	The Concept of Significance	221
	If Only We Were Perfect	222
	The World's Most Important Table	
	(for This Semester Only)	224
	More About Table 9.1	225
	Back to Type I Errors	226
	Significance Versus Meaningfulness	228
	An Introduction to Inferential Statistics	229
	How Inference Works	230
	How to Select What Test to Use	230
	Here's How to Use the Chart	231
	An Introduction to Tests of Significance	233
	How a Test of Significance Works: The Plan	233
	Here's the Picture That's Worth a	
į.	Thousand Words	235
	Confidence Intervals—Be Even More Confident	236
	Real-World Stats	238
	Summary	238
	Time to Practice	238
10.	Only the Lonely: The One-Sample Z-Test	240
	Introduction to the One-Sample Z-Test	240
	The Path to Wisdom and Knowledge	241
	Computing the Test Statistic	243
	Time for an Example	244
	So How Do I Interpret $z = 2.38$, $p < .05$?	246
	Using the Excel Z.TEST Function to	
	Compute the z Value	246
	Real-World Stats	248
	Summary	249
	Time to Practice	249
11.	t(ea) for Two: Tests Between the Means	
	of Different Groups	251
	Introduction to the t-Test for Independent Samples	251
	The Path to Wisdom and Knowledge	252
	Computing the Test Statistic	254
	Time for an Example	254
	So How Do I Interpret $t_{(50)} = -0.14$, p > .05?	258
	And Now Using Excel's T.TEST Function	259

	Using the Amazing Data Analysis Tools to	
	Compute the t Value	261
	Results	264
	Special Effects: Are Those Differences for Real?	264
	Computing and Understanding	
	the Effect Size	265
	A Very Cool Effect Size Calculator	267
	Real-World Stats	268
	Summary	268
	Time to Practice	268
12	t(ca) for Two (Again): Tests Between the	
	Means of Related Groups	270
	Introduction to the t-Test for Dependent Samples	270
	The Path to Wisdom and Knowledge	271
	Computing the Test Statistic	273
	So How Do I Interpret $t_{(24)} = 2.45$, p < .05?	276
	And Now Using Excels	
	T.TEST Function	277
	Using the Amazing Data Analysis	
	Tools to Compute the t Value	279
	Real-World Stats	282
	Summary	283
	Time to Practice	283
12		285
13.	Two Groups Too Many? Try Analysis of Variance Introduction to Analysis of Variance	285
	The Path to Wisdom and Knowledge	286
	Different Flavors of ANOVA	286
		289
	Computing the F-Test Statistic	409
	So How Do I Interpret $F_{(7.37)} = 8.80, p < .05?$	295
	And Now Using Excel's EDIST	293
	and ETEST Functions	296
	Using the Amazing Data Analysis Tools	230
	to Compute the F Value	296
	Real-World Stats	300
		300
	Summary Time to Practice	300
14.	Two Too Many Factors: Factorial Analysis of	***
	Variance—A Brief Introduction	303
	Introduction to Factorial Analysis of Variance	303
	Two Flavors of Factorial ANOVA	304
	The Path to Wisdom and Knowledge	305
	A Million Ellawane of A MICANIA	2 4 5 7

Even More Interesting: Interaction Effects Using the Amazing Data Analysis Tools to Compute the ANOVA F Statistic Real-World Stats Summary Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{OBL} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square Computing the Chi-Square Test Statistic		The Main Event Main Effects in	
Using the Amazing Data Analysis Tools to Compute the ANOVA F Statistic Real-World Stats Summary Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r ₍₂₀₎ = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to One-Sample Chi-Square		Factorial ANOVA	308
Using the Amazing Data Analysis Tools to Compute the ANOVA F Statistic Real-World Stats Summary Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r ₍₂₀₎ = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to One-Sample Chi-Square		Even More Interesting: Interaction Effects	309
Compute the ANOVA F Statistic Real-World Stats Summary Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret rown = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			
Real-World Stats Summary Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{Ost} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			311
Time to Practice 15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{Oat} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			316
15. Cousins or Just Good Friends? Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r.o.a. = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to One-Sample Chi-Square		Summary	317
Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{OBD} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square		Time to Practice	317
Testing Relationships and the Significance of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{OBD} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square	15	Consine or Just Good Friends?	
of the Correlation Coefficient Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{OBD} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now	N 200	_	
Introduction to Testing the Correlation Coefficient The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r _{CM} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			318
The Path to Wisdom and Knowledge Computing the Test Statistic So How Do I Interpret r. 1918 = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's SLOPE Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to One-Sample Chi-Square			318
Computing the Test Statistic So How Do I Interpret r _{OBI} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			319
So How Do I Interpret r _{CM} = .393, p < .05? Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			319
Causes and Associations (Again!) Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			324
Significance Versus Meaningfulness (Again, Again!) Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal; Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			325
Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			
Real-World Stats Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			325
Summary Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			326
Time to Practice 16. Predicting Who'll Win the Super Bowl: Using Linear Regression What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			327
What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			327
What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square	16	P. dining Wil. 31 Win d. Comm. Parel.	
What Is Prediction All About? The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square	10.		230
The Logic of Prediction Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			328
Drawing the World's Best Line (for Your Data) And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			330
And Now Using Excel's SLOPE Function And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			333
And Now Using Excel's INTERCEPT Function Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			337
Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			331
Using the Amazing Data Analysis Tools to Compute the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			339
the Regression Equation How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			3,39
How Good Is Our Prediction? The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			342
The More Predictors, the Better? Maybe The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			344
The Big Rule When It Comes to Using Multiple Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			345
Predictor Variables Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			נדנ
Real-World Stats Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			346
Summary Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			347
Time to Practice 17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			348
17. What to Do When You're Not Normal: Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square			348
Chi-Square and Some Other Nonparametric Tests Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square		Time to Fractice	
Introduction to Nonparametric Statistics Introduction to One-Sample Chi-Square	17.		
Introduction to One-Sample Chi-Square			351
			351
Computing the Chi-Square Test Statistic			352
		Computing the Chi-Square Test Statistic	353

	So How Do I Interpret $\chi^2 = 20.6$, p < .05?	356
	And Now Using Excel's	
	CHISQ.TEST Function	357
	Other Nonparametric Tests You Should Know About	360
	Real-World Stats	361
	Summary	362
	Time to Practice	362
10	Cama Other (Important) Statistical	
10.	Some Other (Important) Statistical Procedures You Should Know About	364
		365
	Post Hoc Comparisons Multivariate Analysis of Variance	365
	Repeated Measures Analysis of Variance	366
	Analysis of Covariance	367
	Multiple Regression	367
	Logistic Regression	368
	Factor Analysis	368
	Data Mining	369
	Path Analysis	370
	Structural Equation Modeling	370
	Summary	371
	Sulmary	
19.	A Statistical Software Sampler	372
	Selecting the Perfect Statistics Software	373
	What's Out There	374
	The Free Stuff and Open Source Stuff	375
	Time to Pay	377
	Summary	380
20.	(Mini) Data Mining: A Introduction to	
	Getting the Most Out of Your BIG Data	381
	Our Sample Data Set-Who Doesn't Love Babies?	383
	Some Excel Data-Exploring Functions	
	The DAVERAGE Function	
	What DAVERAGE Does	385
	What DAVERAGE Looks Like	385
	Using the DAVERAGE Function	386
	The COUNTIF Function	388
	What COUNTIF Does	388
	What COUNTIF Looks Like	388
	Using the COUNTIF Function	388
	Pivot Tables and Cross-Tabulation:	
	Finding Hidden Patterns	389
	Creating a Pivot Table	390
	Modifying a Pivot Table	393
	Summary	394
	Time to Practice	304

PART V

Ten Things You'll Want to Know and Remember	395
21. The Ten (or More) Best (and Most Fun)	
Internet Sites for Statistics Stuff	397
How About Studying Statistics in Stockholm?	397
Calculators Galore!	398
Who's Who and What's Happened	399
It's All Here	300
HyperStat	399
Data? You Want Data?	400
More and More Resources	401
Online Statistical Teaching Materials	401
And, of Course, YouTube	401
22. The Ten Commandments of Data Collection	403
Appendix A: Excel-erate Your Learning:	
All You Need to Know About Excel	406
Appendix B: Tables	412
Appendix C: Data Sets	428
Appendix D: Answers to Practice Questions	453
Appendix E: Math: Just the Basics	489
Appendix F: The Reward: The Brownie Recipe	494
Glossary	496
Index	504