

GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information Copy and paste <u>curr</u>		formation from <u>Clas</u>	s Search/Cours	e Catalog.		
College/School		Liberal Arts and Scie		Department/School	School Exploi	of Earth and Space ation
Prefix: SES	Number:	130 Title:	Coding for E	xploration		Units: 3.0
1		-		ta processing and analysis . Numerical methods for (h and Space sciences using lytics.
Is this a cross-liste	ed course?	No	If yes, please	e identify course(s):		
Is this a shared co	urse?	No	If so, list all	academic units offering thi	is course:	
designation requested.	By submitting the	and/or shared, a letter of s his letter of support, the cl e in a manner that meets t	hair/director agrees		at offers the the course	e course is required for <u>each</u> are aware of the General Studies
Is this a permanent	t-numbered o	course with topics?	No			
for the approved des teaching the course	signation(s). It are aware of the	is the responsibility of	the chair/director gnation(s) and adl	a manner that meets the criteri to ensure that all faculty here to the above guidelines. Mandatory		hir/Director Initials (Required) (Choose one)
		red for each designatio		J		(,
Eligibility: Perma omnibus courses, co			mpleted the unive	rsity's review and approval pr	ocess. For	the rules governing approval of
Submission dead						
		Date: October 1, 20	17	For Spring 2019 E	ffective D	Date: March 10, 2018
Area(s) proposed						
awareness area requir	rements concur	rently, but may not sat	isfy requirements	A course may satisfy a core a in two core areas simultaneou inted toward both the General	isly, even	if approved for those areas.
Checklists for gen	eral studies	designations:				
Complete and atta	ch the approp	oriate checklist				
Literacy and C	ritical Inquir	y core courses (L)				
Mathematics c						
		tive applications cor				
		n core courses (HU)				
		$\frac{\text{core courses (SB)}}{(SO/SC)}$				
Natural Science		ited States courses ((\mathbf{r})			
Global Awaren			<u>C)</u>			
Historical Awa						
A complete propos	al should inc	lude:				
 ∠ Criteria c ∠ Course c ∠ Sample s 	<u>hecklist</u> for (atalog descrij yllabus for th	e course	_	quested uired readings/books		
	quested that			cally with all files compile	ed into or	ne PDF.
Name Becca	Dial	E-mail	bdial@asu.e	du	Phone	480-965-2213
Department Chair	Director ap	proval: (<i>Required</i>)				
Chair/Director name	(Typed):	Christopher Grop	pi		Date:	1/18/18
Chair/Director (Sigr		S Syri				

Arizona State University Criteria Checklist for

MATHEMATICAL STUDIES [CS]

Rationale and Objectives

The **Mathematical Studies** requirement is intended to ensure that students have skill in basic mathematics, can use mathematical analysis in their chosen fields, and can understand how computers can make mathematical analysis more powerful and efficient. The **Mathematical Studies** requirement is completed by satisfying both the **Mathematics [MA]** requirement and the **Computer/Statistics/Quantitative Applications [CS]** requirement explained below.

The **Mathematics [MA]** requirement, which ensures the acquisition of essential skill in basic mathematics, requires the student to complete a course in College Mathematics, College Algebra, or Pre-calculus; or demonstrate a higher level of skill by completing a mathematics course for which a course in the above three categories is a prerequisite.

The **Computer/Statistics/Quantitative Applications [CS]** requirement, which ensures skill in real world problem solving and analysis, requires the student to complete a course that uses some combination of computers, statistics, and/or mathematics.* Computer usage is encouraged but not required in statistics and quantitative applications courses. At a minimum, such courses should include multiple demonstrations of how computers can be used to perform the analyses more efficiently.

*CS does *not* stand for computer science in this context; the "S" stands for statistics. Courses in computer science must meet the criteria stated for CS courses.

Revised April 2014

		ASU[CS] CRITERIA			
	A COMPUTER/STATISTICS/QUANTITATIVE APPLICATIONS [CS] COURSE MUST SATISFY ONE OF THE FOLLOWING CRITERIA: 1, 2, OR 3				
YES	NO		Identify Documentation Submitted		
X		 Computer applications*: courses must satisfy both a and b: a. Course involves the use of computer programming languages or software programs for quantitative analysis, algorithmic design, modeling, simulation, animation, or statistics. 	Course syllabus		
		b. Course requires students to analyze and implement procedures that are applicable to at least one of the following problem domains (check those applicable):			
	X	i. Spreadsheet analysis, systems analysis and design, and decision support systems.			
	X	ii. Graphic/artistic design using computers.			
	X	iii. Music design using computer software.			
	X	iv. Modeling, making extensive use of computer simulation.			
	X	v. Statistics studies stressing the use of computer software.			
X		vi. Algorithmic design and computational thinking.	Course syllabus		

Proposer: Please complete the following section and attach appropriate documentation.

*The **computer applications** requirement **cannot** be satisfied by a course, the content of which is restricted primarily to word processing or report preparation skills, the study of the social impact of computers, or methodologies to select software packages for specific applications. Courses that emphasize the use of a computer software package are acceptable only if students are required to understand, at an appropriate level, the theoretical principles embodied in the operation of the software and are required to construct, test, and implement procedures that use the software to accomplish tasks in the applicable problem domains. Courses that involve the learning of a computer programming language are acceptable only if they also include a substantial introduction to applications to one of the listed problem domains.

YES	NO		Identify Documentation Submitted
		2. Statistical applications: courses must satisfy a , b , and c .	
		a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on developing knowledge in statistical inference and include coverage of all of the following:	
		i. Design of a statistical study.	
		ii. Summarization and interpretation of data.	
		iii. Methods of sampling.	
		iv. Standard probability models.	
		v. Statistical estimation	
		vi. Hypothesis testing.	
		vii. Regression or correlation analysis.	
		c. The course must include multiple demonstrations of how computers can be used to perform statistical analysis more efficiently, if use of computers to carry out the analysis is not required.	

YES	NO		Identify Documentation Submitted
		3. Quantitative applications: courses must satisfy a , b , and c :.	
		a. Course has a minimum mathematical prerequisite of College Mathematics, College Algebra, or Pre-calculus, or a course already approved as satisfying the MA requirement.	
		b. The course must be focused principally on the use of mathematical models in quantitative analysis and decision making. Examples of such models are:	
		i. Linear programming.	
		ii. Goal programming.	
		iii. Integer programming.	
		iv. Inventory models.	
		v. Decision theory.	
		vi. Simulation and Monte Carlo methods.	
		vii. Other (explanation must be attached).	
		c. The course must include multiple demonstrations of how computers can be used to perform the above applications more efficiently, if use of computers is not required by students.	

Course Prefix	Number	Title	General Studies Designation
SES	130	Coding for Exploration	

Explain in detail which student activities correspond to the specific designation criteria. Please use the following organizer to explain how the criteria are being met.

Criteria (from checksheet)	How course meets spirit (contextualize specific examples in next column)	Please provide detailed evidence of how course meets criteria (i.e., where in syllabus)
la	The course teaches computer programming using languages Scratch and python. The students use computers to design algorithms and analyze Earth and space science data.	As outlined in the course syllabus, problems from The Zelle textbook treat programming in python and algorithmic design. Exercises utilize real earth and Space science data.
1 b vi	Students learn the how to Approach programming tasks And how to design algorithms.	Exercises outlined on the syllabus teach functional and object-oriented program design, designing or selecting algorithms, and applying these to earth And space science data.

SES130: Coding for Exploration

Instructors:

Nathaniel Butler Office: Goldwater 578 Phone: 480-965-8207 Email: Nathaniel. Butler@asu.edu

Sang-Heon (Dan) Shim Office: ISTB4 575 Phone: 480-727-2876 Email: SHDShim@asu.edu

Office Hours: To be determined or by appointment

1. Course Description

A series of lectures and computer labs on data processing and analysis in Earth and Space sciences using Python. Introduction to programming with scratch and python. Numerical methods for data analytics.

2. Learning Outcomes

Upon completion, students will be able to:

- Learn to solve problems, in groups, using computers.
- Utilize procedural programming concepts including data types, variables, control structures, arrays, and data I/O.
- Utilize software engineering concepts including testing, incremental development, understanding requirements, and teamwork.
- Design strategies to analyze Earth and Space science data
- Write codes to process Earth and Space science data
- Present key properties of Earth and Space science data
- Interpret data for understanding Earth processes and Astronomy

3. Exercises, Test and Term Project

The course will be evaluated based on seven exercises, one final examination and six individual problem sets. The final examination consists of 5-7 coding questions based on the materials taught in this course. An instructional sheet will be provided for each problem set. All evaluation materials will be available with sufficient time for completion.

4. Grading

The course is for 3 units. Grading is based on A to E with +/- letter grading: 97.5% - 100% = A+, 92.5% - 97.4% = A, 90% - 92.4% = A-, 87.5% - 89.9% = B+, 82.5% - 87.4% = B, 82.4% - 80% = B-, 77.5% - 79.9% = C+, 70% - 77.4% = C, 60% - 69.9% = D, 0% - 59.9% = E.

Item	Percentage
Attendance	10.0%
Problem set #1	10%

Problem set #2	10%
Problem set #3	10%
Problem set #4	10%
Problem set #5	10%
Problem set #6	10%
Final examination	30%
Total	100%

Extra Credit

There will be **no extra credit opportunities** assigned for this course. However, individualized honors contracts and opportunities for independent study credit supervised by the instructor will be made available for projects that go beyond the scope of this course.

5. Readings and weekly itineraries

"Python Programming: An Introduction to Computer Science 3rd Edition", by John Zelle

"Python for Data Analysis, Agile Tools for Real World Data," Wes McKinney

Week 1 Course overview, why python?; Zelle Ch1

Week 2 Computers and Simple Programs; Zelle Ch 2

Week 3 Data Types, numbers; Zelle Ch 3

Plate velocities

The students analyze the hot spot age versus distance data along the Hawaii-Emperor seamount chain to obtain average plate velocities over the past 60 million years.

Week 4 String; Zelle Ch 5

Week 5-6 Files & Functions; Zelle Ch 6

Equations of state The students conduct numerical integrations and differentiations to understand the effects of high pressure on the thermodynamic properties of materials in the deep interiors of planets.

Week 7-8 Decision Structures; Zelle Ch 7

Week 9-10 Loops & Booleans; Zelle Ch 8

Mass-radius relations of extrasolar planets

The students simulate the mass-radius relations of exoplanets with different materials (gas, ice, rock, and metal) and compare the results with astrophysical measurements of exoplanets.

Week 11Classes; Zelle Ch 10

Least-squares fitting Using Variable Stars

The students return to this data set in order to find and fit a model (sum of sinusoids) to better fit the variable star time history.

Week 12 Data Collections; Zelle Ch 11

Earthquakes

The students analyze the relationship between the depth and distance of epicenters along the Japan trench. The data will be used for modeling the pattern of subduction in the region. They also conduct time-series analysis of the data and measure changes in earthquake frequencies over the past 50 years.

Week 13 Numerical Python; McKinney Ch 4

Image Denoising Using FFTs

The students analyze an image of a moon rock from the Apollo missions to the moon. Electronic noise is present, and low-pass filter is demonstrated in order to clean up the image. The students experiment with the visualization of the 2D FFT and the placing of cut-off levels that zero-out the high-frequency components of the signal.

Week 14 Scientific Python; McKinney Ch 12

Periodicity Analysis Using Variable Stars

Use a 1d FFT to plot the periodogram for the time history of a variable star. The students identify the period and the overplot a sinusoid against the time history data. Data are taken from the Sloan Digital Sky Survey.

Week 15 Plotting; McKinney Ch 8

Image Classification and Shape Identification

The students return to an idealized version of the moon rock problem, using Sobel filtering to flag the edges of the moon rock and to identify the position of these edges in a captured image. Pseudo-code is written to use this information in an avoidance algorithm that would be of interest for an automated moon rover.

Questions at the end of each chapter serve as the weekly homework assignments, due at the start of class the following week.

A take-home mid-term exam will be given in liue of the week 6 homework. A final exam will be given during the final exam period at the end of the course.

6. Discussion Policy

Students should not discuss problem sets among themselves. No discussions are allowed for the final examination.

7. Other important announcements

ABSENCES

Students should expect to attend all classes. It is the responsibility of the student to inform the instructor(s) of an unexcused absence as soon as possible. Absences for emergency situations may be excused unofficially by the instructors. Instructor-excused absences must be obtained *prior to or on the day of the absence*. Make-ups for such absences will be at the discretion of the instructor(s). *There will be no make-ups for unexcused absences*.

The conditions under which assigned work or tests can be made up, including:

- Information on excused absences related to religious observances/practices that are in accordance with <u>ACD</u> 304–04 "Accommodations for Religious Practices."
- Information on excused absences related to university sanctioned events activities that are in accord with <u>ACD</u> 304–02 "Missed Classes Due to University-Sanctioned Activities."

ACADEMIC INTEGRITY

Academic honesty is expected of all students in all examinations, papers, and laboratory work, academic transactions and records. The possible sanctions include, but are not limited to, appropriate grade penalties, course failure (indicated on the transcript as a grade of E), course failure due to academic dishonesty (indicated on the transcript as a grade of XE), loss of registration privileges, disqualification and dismissal. For more information, see http://provost.asu.edu/academicintegrity

ACCOMODATING STUDENTS WITH DISABILITIES

Students who feel they will need disability accommodations in this class but have not registered with the Disability Resource Center (DRC) should contact DRC immediately. The DRC Tempe office is located on the first floor of the Matthews Center Building. DRC staff can also be reached at: (480) 965-1234 (V) or (480) 965-9000 (TTY). For additional information, visit: www.asu.edu/studentaffairs/ed/drc.

EXPECTED CLASSROOM BEHAVIOR

Classroom behavior: Be sure to arrive on time for class. Excessive tardiness will be subject to sanctions. Under no circumstances should you allow your cell phone to ring during class. Any disruptive behavior, which includes ringing cell phones, listening to your mp3/iPod player, text messaging, constant talking, eating food noisily, reading a newspaper will not be tolerated. The use of laptops (unless for note taking), cell phones, MP3, IPOD, etc. are strictly prohibited during class.

Policy against threatening behavior: All incidents and allegations of violent or threatening conduct by an ASU student (whether on-or off campus) must be reported to the ASU Police Department (ASU PD) and the Office of the Dean of Students. If either office determines that the behavior poses or has posed a serious threat to personal safety or to the welfare of the campus, the student will not be permitted to return to campus or reside in any ASU residence hall until an appropriate threat assessment has been completed and, if necessary, conditions for return are imposed. ASU PD, the Office of the Dean of Students, and other appropriate offices will coordinate the assessment in light of the relevant circumstances.

LATE ASSIGNMENTS

Requests for modifications in assignment due dates must be made in writing and an approved by the instructor **in advance of the due date of the assignment**.

GRADE APPEALS

The College of Liberal Arts and Sciences has formal and informal channels to appeal a grade.

INCOMPLETES

A mark of "I" (incomplete) is given by the instructor when you have completed most of the course and are otherwise doing acceptable work but are unable to complete the course because of illness or other conditions beyond your control. Students who are granted a grade of

"I" are required to arrange with the instructor for the completion of the course requirements and are recorded using the following <u>form</u>.

STUDENT STANDARDS

Students are required to act in accordance with university and Arizona Board of Regents policies as outlined in the ABOR Code of Conduct: <u>Arizona Board of Regents Policies 5-301</u> through 5-308.

DROP AND ADD DATES/WITHDRAWALS

Please refer to the academic calendar on the deadlines to drop/withdraw from this course. Consult with your advisor and notify your instructor if you are going to drop/withdraw this course. If you are considering a withdrawal, review the following ASU policies: Withdrawal from Classes and Medical/Compassionate Withdrawal.

EMAIL COMMUNICATIONS

All email communication for this class will be done through your ASU email account. You should be in the habit of checking your ASU email regularly as you will not only receive important information about your classes, but other important university updates and information. You are solely responsible for reading and responding if necessary to any information communicated via email.

CAMPUS RESOURCES

As an ASU student, you have access to many resources on campus. This includes tutoring, academic success coaching, counseling services, financial aid, disability resources, career and internship help, and many opportunities to get involved in student clubs and organizations.

- <u>Tutoring</u>
- Counseling Services
- Financial Aid
- Disability Resource Center
- Major/Career Exploration
- Career Services
- <u>Student Organizations</u>

HARASSMENT PROHIBITIONS

ASU policy prohibits harassment on the basis of race, sex, gender identity, age, religion, national origin, disability, sexual orientation, Vietnam era veteran status, and other protected veteran status. Violations of this policy may result in disciplinary action, including termination of employees or expulsion of students. Contact Student Life (UCB 221) if you feel another student is harassing you based on any of the factors above; contact EO/AA (480-965-5057) if you feel an ASU employee is harassing you based on any of the factors above.

ESTABLISHING A SAFE LEARNING ENVIRONMENT

Learning takes place best when a safe environment is established in the classroom. Students enrolled in this course have a responsibility to support an environment that nurtures individual and group differences and encourages engaged, honest discussions. The success of the course rests on your ability to create a safe environment where everyone feels comfortable to share and explore ideas. We must also be willing to take risks and ask critical questions. Doing so will effectively contribute to our own and others intellectual and personal growth and development. We welcome disagreements in the spirit of critical academic exchange, but please remember to be respectful of others' view points, whether you agree with them or not.

SYLLABUS DISCLAIMER

The course syllabus is an educational contract between the instructor and students. Every effort will be made to avoid changing the course schedule but the possibility exists that unforeseen events will make syllabus changes necessary. The instructor reserves the right to make changes to the syllabus as deemed necessary. You will be notified in a timely manner of any syllabus changes via email or through Blackboard.

STUDENT CONDUCT STATEMENT

Students will be required to adhere to the behavior standards listed below:

- Arizona Board of Regents Policy Manual Chapter V Campus and Student Affairs: <u>Code of Conduct</u>.
- ACD 125: <u>Computer, Internet, and Electronic Communications</u>.
- <u>ASU's Student Academic Integrity Policy</u>.

Students are entitled to receive instruction free from interference by other members of the class. If a student is disruptive, an instructor may ask the student to stop the disruptive behavior and warn the student that such disruptive behavior can result in withdrawal from the course. An instructor may withdraw a student from a course when the student's behavior disrupts the educational process under <u>USI 201-10</u>.

Course discussion messages should remain focused on the assigned discussion topics. Students must maintain a cordial atmosphere and use tact in expressing differences of opinion. Inappropriate discussion board messages may be deleted if an instructor feels it is necessary. Students will be notified privately that their posting was inappropriate. Student access to the course Send Email feature may be limited or removed if an instructor feels that particular students is sending inappropriate electronic messages to other students in the course.

RELIGIOUS ACCOMMODATIONS

Students who need to be absent from class due to the observance of a religious holiday or participate in required religious functions must notify the faculty member in writing as far in advance of the holiday or obligation as possible. Students will need to identify the specific holiday or obligatory function to the faculty member. Students will not be penalized for missing class due to religious obligations or holiday observance and a responsible for contacting the instructor to make arrangements for making up tests/assignments within a reasonable time.

SES 130 Coding for Exploration

Course description:

A series of lectures and computer labs on data processing and analysis in Earth and Space sciences using Python. Introduction to programming with scratch and python. Numerical methods for data analytics.

Textbooks:

"Python Programming: An Introduction to Computer Science 3rd Edition", by John Zelle

"Python for Data Analysis, Agile Tools for Real World Data," Wes McKinney

Weekly Readings:

Week 1 Course overview, why python?; Zelle Ch1 Week 2 Computers and Simple Programs; Zelle Ch 2 Week 3 Data Types, numbers; Zelle Ch 3 Week 4 String; Zelle Ch 5 Week 5-6 Files & Functions; Zelle Ch 6 Week 7-8 Decision Structures; Zelle Ch 7 Week 9-10 Loops & Booleans; Zelle Ch 7 Week 11Classes; Zelle Ch 10 Week 12 Data Collections; Zelle Ch 11 Week 13 Numerical Python; McKinney Ch 4 Week 14 Scientific Python; McKinney Ch 12 Week 15 Plotting; McKinney Ch 8

Table of Contents for Python Programming: An Introduction to Computer Science, 3rd Edition, John Zelle

Chapter 1 Computers and Programs 1.1 The Universal Machine 1.2 Program Power 1.3 What Is Computer Science? 1.4 Hardware Basics 1.5 Programming Languages 1.6 The Magic of Python 1.7 Inside a Python Program 1.8 Chaos and Computers 1.9 Chapter Summary 1.10 Exercises

Chapter 2 Writing Sample Programs 2.1 The Software Development Process

- 2.2 Example Program: Temperature Converter
- 2.3 Elements of Programs
- 2.4 Output Statements
- 2.5 Assignment Statements
- 2.6 Definite Loops
- 2.7 Example Program: Future Value
- 2.8 Chapter Summary
- 2.9 Exercises

Chapter 3 Computing with Numbers

- 3.1 Numeric Data Types
- 3.2 Type Conversions and Rounding
- 3.3 Using the Math Library
- 3.4 Accumulating Results: Factorials

3.5 Limitations of Computer Arithmetic

- 3.6 Chapter Summary
- 3.7 Exercises

Chapter 4 Objects and Graphics 4.1 Overview 4.2 The Object of Objects 4.3 Simple Graphics Programming 4.4 Using Graphical Objects 4.5 Graphing Future Value 4.6 Choosing Coordinates

- 4.7 Interactive Graphics
- 4.8 Graphics Module Reference
- 4.9 Chapter Summary
- 4.10 Exercises

Chapter 5 Sequences: Strings, Lists, and Files

- 5.1 The String Data Type
- 5.2 Simple String Processing
- 5.3 Lists as Sequences

5.4 String Representation and Message Encoding

- 5.5 String Methods
- 5.6 List Have Methods, Too
- 5.7 From Encoding to Encryption
- 5.8 Input/Output as String Manipulation
- 5.9 File Processing
- 5.10 Chapter Summary
- 5.11 Exercises

Chapter 6 Defining Functions 6.1 The Function of Functions 6.2 Functions, Informally 6.3 Future Value with a Function 6.4 Functions and Parameters: The Exciting Details 6.5 Functions that Return Values

- 6.5 Functions that Return values
- 6.6 Functions that Modify Parameters
- 6.7 Functions and Program Structure
- 6.8 Chapter Summary
- 6.9 Exercises

Chapter 7 Decision Structures 7.1 Simple Decisions 7.2 Two-Way Decisions 7.3 Multi-Way Decisions 7.4 Exception Handling 7.5 Study in Design: Max of Three 7.6 Chapter Summary 7.7 Exercises Chapter 8 Loop Structures and Booleans

- 8.1 For Loops: A Quick Review
- 8.2 Indefinite Loops
- 8.3 Common Loop Patterns
- 8.4 Computing with Booleans
- 8.5 Other Common Structures
- 8.6 Example: A Simple Event Loop
- 8.7 Chapter Summary
- 8.8 Exercises

Chapter 9 Simulation and Design 9.1 Simulating Racquetball 9.2 Pseudo-random Numbers 9.3 Top-Down Design 9.4 Bottom-Up Implementation 9.5 Other Design Techniques 9.6 Chapter Summary

9.7 Exercises

Chapter 10 Defining Classes 10.1 Quick Review of Objects 10.2 Example Program: Cannonball 10.3 Defining New Classes 10.4 Data Processing with Class 10.5 Objects and Encapsulation 10.6 Widgets 10.7 Animated Cannonball 10.8 Chapter Summary 10.9 Exercises Chapter 11 Data Collections 11.1 Example Problem: Simple Statistics 11.2 Applying Lists 11.3 Lists of Records 11.4 Designing with Lists and Classes 11.5 Case Study: Python Calculator 11.6 Case Study: Better Cannonball Animation **11.7 Non-sequential Collections** 11.8 Chapter Summary 11.9 Exercises Chapter 12 Object-Oriented 12.1 The Process of OOD 12.2 Case Study: Racquetball 12.3 Case Study: Dice Poker 12.4 OO Concepts

- 12.5 Chapter Summary
- 12.6 Exercises

Chapter 13 Algorithm Design and Recursion 13.1 Searching 13.2 Recursive Problem Solving 13.3 Sorting Algorithms13.4 Hard Problems13.5 Chapter Summary13.6 Exercises

Table of Contents for Python for Data Analysis, Wes McKinney

Prefa	ce	xi
1.	Preliminaries	1
	What Is This Book About?	1
	Why Python for Data Analysis?	2
	Python as Glue	2 2 2 3 3
	Solving the "Two-Language" Problem	2
	Why Not Python?	3
	Essential Python Libraries	3
	NumPy	4
	pandas	4
	matplotlib	5
	IPython	5
	SciPy	6
	Installation and Setup	6
	Windows	7
	Apple OS X	7
	GNU/Linux	8
	Python 2 and Python 3	8
	Integrated Development Environments (IDEs)	9
	Community and Conferences	9
	Navigating This Book	9
	Code Examples	10
	Data for Examples	10
	Import Conventions	10
	Jargon	11
	Acknowledgements	11
2.	Introductory Examples	13
	1.usa.gov data from bit.ly	14
	Counting Time Zones in Pure Python	15

	Counting Time Zones with pandas	17
	MovieLens 1M Data Set	22
	Measuring rating disagreement	27
	US Baby Names 1880-2010	28
	Analyzing Naming Trends	33
	Conclusions and The Path Ahead	40
3.	IPython: An Interactive Computing and Development Environment	41
	IPython Basics	42
	Tab Completion	43
	Introspection	44
	The %run Command	45
	Executing Code from the Clipboard	46
	Keyboard Shortcuts	48
	Exceptions and Tracebacks	49
	Magic Commands	50
	Qt-based Rich GUI Console	51
	Matplotlib Integration and Pylab Mode	52
	Using the Command History	54
	Searching and Reusing the Command History	54
	Input and Output Variables	54
	Logging the Input and Output	55
	Interacting with the Operating System	56
	Shell Commands and Aliases	56
	Directory Bookmark System	58
	Software Development Tools	58
	Interactive Debugger	58
	Timing Code: %time and %timeit	63
	Basic Profiling: %prun and %run -p	64
	Profiling a Function Line-by-Line	66
	IPython HTML Notebook	68
	Tips for Productive Code Development Using IPython	68
	Reloading Module Dependencies	70
	Code Design Tips	70
	Advanced IPython Features	72
	Making Your Own Classes IPython-friendly	72
	Profiles and Configuration	73
	Credits	74
4.	NumPy Basics: Arrays and Vectorized Computation	
	The NumPy ndarray: A Multidimensional Array Object	76
	Creating ndarrays	77
	Data Types for ndarrays	79

	Operations between Arrays and Scalars	81
	Basic Indexing and Slicing	82
	Boolean Indexing	85
	Fancy Indexing	88
	Transposing Arrays and Swapping Axes	89
	Universal Functions: Fast Element-wise Array Functions	91
	Data Processing Using Arrays	93
	Expressing Conditional Logic as Array Operations	94
	Mathematical and Statistical Methods	96
	Methods for Boolean Arrays	97
	Sorting	97
	Unique and Other Set Logic	98
	File Input and Output with Arrays	99
	Storing Arrays on Disk in Binary Format	99
	Saving and Loading Text Files	100
	Linear Algebra	101
	Random Number Generation	102
	Example: Random Walks	104
	Simulating Many Random Walks at Once	105
5.	Getting Started with pandas	
	Introduction to pandas Data Structures	108
	Series	108
	DataFrame	111
	Index Objects	116
	Essential Functionality	118
	Reindexing	118
	Dropping entries from an axis	121
	Indexing, selection, and filtering	122
	Arithmetic and data alignment	125
	Function application and mapping	128
	Sorting and ranking	130
	Axis indexes with duplicate values	132
	Summarizing and Computing Descriptive Statistics	133
	Correlation and Covariance	136
	Unique Values, Value Counts, and Membership	137
	Handling Missing Data	139
	Filtering Out Missing Data	140
	Filling in Missing Data	142
	Hierarchical Indexing	143
	Reordering and Sorting Levels	146
	Summary Statistics by Level	147
	Using a DataFrame's Columns	147

	Other pandas Topics	148
	Integer Indexing	148
	Panel Data	149
6.	Data Loading, Storage, and File Formats	. 153
	Reading and Writing Data in Text Format	153
	Reading Text Files in Pieces	158
	Writing Data Out to Text Format	160
	Manually Working with Delimited Formats	161
	JSON Data	163
	XML and HTML: Web Scraping	164
	Binary Data Formats	169
	Using HDF5 Format	169
	Reading Microsoft Excel Files	170
	Interacting with HTML and Web APIs	171
	Interacting with Databases	172
	Storing and Loading Data in MongoDB	173
7.	Data Wrangling: Clean, Transform, Merge, Reshape	175
	Combining and Merging Data Sets	175
	Database-style DataFrame Merges	176
	Merging on Index	180
	Concatenating Along an Axis	183
	Combining Data with Overlap	187
	Reshaping and Pivoting	188
	Reshaping with Hierarchical Indexing	188
	Pivoting "long" to "wide" Format	190
	Data Transformation	192
	Removing Duplicates	192
	Transforming Data Using a Function or Mapping	193
	Replacing Values	195
	Renaming Axis Indexes	196
	Discretization and Binning	197
	Detecting and Filtering Outliers	200
	Permutation and Random Sampling	201
	Computing Indicator/Dummy Variables	202
	String Manipulation	204
	String Object Methods	204
	Regular expressions	206
	Vectorized string functions in pandas	209
	Example: USDA Food Database	211

8.	Plotting and Visualization		
	A Brief matplotlib API Primer	217	
	Figures and Subplots	218	
	Colors, Markers, and Line Styles	222	
	Ticks, Labels, and Legends	223	
	Annotations and Drawing on a Subplot	226	
	Saving Plots to File	229	
	matplotlib Configuration	229	
	Plotting Functions in pandas	230	
	Line Plots	230	
	Bar Plots		
	Histograms and Density Plots		
	Scatter Plots	237	
	Plotting Maps: Visualizing Haiti Earthquake Crisis Data	239	
	Python Visualization Tool Ecosystem	245	
	Chaco	246	
	mayavi	247	
	Other Packages	247	
	The Future of Visualization Tools?	247	
9.	Data Aggregation and Group Operations	249	
	GroupBy Mechanics	250	
	Iterating Over Groups	253	
	Selecting a Column or Subset of Columns	254	
	Grouping with Dicts and Series	255	
	Grouping with Functions	256	
	Grouping by Index Levels	257	
	Data Aggregation	258	
	Column-wise and Multiple Function Application	260	
	Returning Aggregated Data in "unindexed" Form	262	
	Group-wise Operations and Transformations	263	
	Apply: General split-apply-combine	264	
	Quantile and Bucket Analysis	267	
	Example: Filling Missing Values with Group-specific Values	268	
	Example: Random Sampling and Permutation	269	
	Example: Group Weighted Average and Correlation	271	
	Example: Group-wise Linear Regression	272	
	Pivot Tables and Cross-Tabulation	273	
	Cross-Tabulations: Crosstab	275	
	Example: 2012 Federal Election Commission Database	276	
	Donation Statistics by Occupation and Employer	278	
	Bucketing Donation Amounts	281	
	Donation Statistics by State	283	

	10.	Time Series	285
17		Date and Time Data Types and Tools	286
17		Converting between string and datetime	287
18		Time Series Basics	289
22		Indexing, Selection, Subsetting	290
23		Time Series with Duplicate Indices	292
26		Date Ranges, Frequencies, and Shifting	293
29		Generating Date Ranges	294
29		Frequencies and Date Offsets	295
30		Shifting (Leading and Lagging) Data	297
30		Time Zone Handling	299
33 36		Localization and Conversion	300
37		Operations with Time Zone-aware Timestamp Objects	301
39		Operations between Different Time Zones	302
45		Periods and Period Arithmetic	303
46		Period Frequency Conversion	304
47		Quarterly Period Frequencies	305
47		Converting Timestamps to Periods (and Back)	307
47		Creating a PeriodIndex from Arrays	308
		Resampling and Frequency Conversion	309
49		Downsampling	310
50		Upsampling and Interpolation	313
53		Resampling with Periods	314
54		Time Series Plotting	315
55		Moving Window Functions	317
56 57		Exponentially-weighted functions	320
58		Binary Moving Window Functions	321
60		User-Defined Moving Window Functions	322
62		Performance and Memory Usage Notes	323
63 64	11.	Financial and Economic Data Applications	. 325
67		Data Munging Topics	325
68		Time Series and Cross-Section Alignment	326
69		Operations with Time Series of Different Frequencies	328
71		Time of Day and "as of" Data Selection	330
72 73		Splicing Together Data Sources	332
75		Return Indexes and Cumulative Returns	334
76		Group Transforms and Analysis	336
78		Group Factor Exposures	338
81		Decile and Quartile Analysis	339
83		More Example Applications	341
		Signal Frontier Analysis	342
		Future Contract Rolling	344

	Rolling Correlation and Linear Regression	347
2.	Advanced NumPy	349
	ndarray Object Internals	349
	NumPy dtype Hierarchy	350
	Advanced Array Manipulation	351
	Reshaping Arrays	351
	C versus Fortran Order	352
	Concatenating and Splitting Arrays	353
	Repeating Elements: Tile and Repeat	356
	Fancy Indexing Equivalents: Take and Put	357
	Broadcasting	358
	Broadcasting Over Other Axes	360
	Setting Array Values by Broadcasting	363
	Advanced ufunc Usage	363
	ufunc Instance Methods	364
	Custom ufuncs	366
	Structured and Record Arrays	366
	Nested dtypes and Multidimensional Fields	367
	Why Use Structured Arrays?	368
	Structured Array Manipulations: numpy.lib.recfunctions	368
	More About Sorting	369
	Indirect Sorts: argsort and lexsort	370
	Alternate Sort Algorithms	371
	numpy.searchsorted: Finding elements in a Sorted Array	372
	NumPy Matrix Class	373
	Advanced Array Input and Output	375
	Memory-mapped Files	375
	HDF5 and Other Array Storage Options	376
	Performance Tips	376
	The Importance of Contiguous Memory	377
	Other Speed Options: Cython, f2py, C	378
per	dix: Python Language Essentials	381
lov		479