

Rev. 4/2019

GENERAL STUDIES COURSE PROPOSAL COVER FORM

Course information:

Copy and paste current course information from Class Search/Course Catalog.

College/School Ira A. Fulton Schools of Engineering Department/School CIDSE

Prefix: SER Number: 416 Title:
Software Enterprise: Project and Process

Management
Units:

3

Course description: Project-centric course focusing on applying software process, project management, and technical

leadership. Final course in the software enterprise sequence.

Is this a cross-listed course? No If yes, please identify course(s):

Is this a shared course? No If so, list all academic units offering this course:

Note- For courses that are crosslisted and/or shared, a letter of support from the chair/director of each department that offers the course is required for each

designation requested. By submitting this letter of support, the chair/director agrees to ensure that all faculty teaching the course are aware of the General Studies
designation(s) and will teach the course in a manner that meets the criteria for each approved designation.

Is this a permanent-numbered course with topics? Yes

If yes, each topic requires an individual submission, separate from other topics.

Requested designation: Literacy and Critical Inquiry-L

Note- a separate proposal is required for each designation.

Mandatory Review: Yes

Eligibility: Permanent numbered courses must have completed the university’s review and approval process. For the rules governing approval of

omnibus courses, contact Phyllis.Lucie@asu.edu.

Submission deadlines dates are as follow:

For Fall 2020 Effective Date: October 10, 2019 For Spring 2021 Effective Date: March 5, 2020

Area proposed course will serve:

A single course may be proposed for more than one core or awareness area. A course may satisfy a core area requirement and more than one

awareness area requirements concurrently, but may not satisfy requirements in two core areas simultaneously, even if approved for those areas.

With departmental consent, an approved General Studies course may be counted toward both the General Studies requirement and the major

program of study. It is the responsibility of the chair/director to ensure that all faculty teaching the course are aware of the General Studies

designation(s) and adhere to the above guidelines.
Checklists for general studies designations:

 Complete and attach the appropriate checklist

• Literacy and Critical Inquiry core courses (L)

• Mathematics core courses (MA)

• Computer/statistics/quantitative applications core courses (CS)

• Humanities, Arts and Design core courses (HU)

• Social-Behavioral Sciences core courses (SB)

• Natural Sciences core courses (SQ/SG)

• Cultural Diversity in the United States courses (C)

• Global Awareness courses (G)

• Historical Awareness courses (H)

A complete proposal should include:

 Signed course proposal cover form

 Criteria checklist for General Studies designation being requested

 Course catalog description

 Sample syllabus for the course

 Copy of table of contents from the textbook and list of required readings/books

It is respectfully requested that proposals are submitted electronically with all files compiled into one PDF.

Contact information:

Name Srividya Bansal E-mail srividya.bansal@asu.edu Phone 7-5107

Department Chair/Director approval: (Required)

Chair/Director name (Typed): Srividya Bansal Date: 02-17-2020

Chair/Director (Signature):

https://webapp4.asu.edu/catalog/
mailto:Phyllis.Lucie@asu.edu
https://provost.asu.edu/sites/default/files/page/1617/checklist_l_2014_2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-ma-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-ma-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-cs-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-hu-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-sb-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-sbsq-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-c-2014-2015.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-g-reviewed-april-2014.doc
https://provost.asu.edu/sites/default/files/page/1617/checklist-h-2015-2016.doc
https://provost.asu.edu/curriculum-development/gsc/designation-request-forms

Arizona State University Criteria Checklist for

LITERACY AND CRITICAL INQUIRY - [L]

Rationale and Objectives

Literacy is here defined broadly as communicative competence—that is, competence in written and oral

discourse. Critical inquiry involves the gathering, interpretation, and evaluation of evidence. Any field of

university study may require unique critical skills that have little to do with language in the usual sense

(words), but the analysis of written and spoken evidence pervades university study and everyday life. Thus,

the General Studies requirements assume that all undergraduates should develop the ability to reason

critically and communicate using the medium of language.

The requirement in Literacy and Critical Inquiry presumes, first, that training in literacy and critical inquiry

must be sustained beyond traditional First Year English in order to create a habitual skill in every student;

and, second, that the skill levels become more advanced, as well as more secure, as the student learns

challenging subject matter. Thus, two courses beyond First Year English are required in order for students

to meet the Literacy and Critical Inquiry requirement.

Most lower-level [L] courses are devoted primarily to the further development of critical skills in reading,

writing, listening, speaking, or analysis of discourse. Upper-division [L] courses generally are courses in a

particular discipline into which writing and critical thinking have been fully integrated as means of learning

the content and, in most cases, demonstrating that it has been learned.

Notes:

1. ENG 101, 107 or ENG 105 must be prerequisites

2. Honors theses, XXX 493 meet [L] requirements

3. The list of criteria that must be satisfied for designation as a Literacy and Critical Inquiry [L] course

is presented on the following page. This list will help you determine whether the current version of

your course meets all of these requirements. If you decide to apply, please attach a current syllabus,

or handouts, or other documentation that will provide sufficient information for the General Studies

Council to make an informed decision regarding the status of your proposal.

Revised April 2014

Literacy and Critical Inquiry [L]

Page 2

Proposer: Please complete the following section and attach appropriate documentation.

ASU - [L] CRITERIA
TO QUALIFY FOR [L] DESIGNATION,THE COURSE DESIGN MUST PLACE A MAJOR EMPHASIS

ON COMPLETING CRITICAL DISCOURSE--AS EVIDENCED BY THE FOLLOWING CRITERIA:

YES NO
Identify Documentation

Submitted

CCRRIITTEERRIIOONN 11:: At least 50 percent of the grade in the course should

depend upon writing assignments (see Criterion 3). Group projects are

acceptable only if each student gathers, interprets, and evaluates evidence, and

prepares a summary report. In-class essay exams may not be used for [L]

designation.

Course Syllabus, Project

Description, Lab

Descriptions, example

writing assignments

(student work)

1. Please describe the assignments that are considered in the computation of course grades--and indicate the proportion of the

final grade that is determined by each assignment.

2. Also:

C-1

CCRRIITTEERRIIOONN 22:: The writing assignments should involve gathering,

interpreting, and evaluating evidence. They should reflect critical inquiry,

extending beyond opinion and/or reflection.

All lab assignments

involve reflection questions

that have to be answered by

individual students (Lab

descriptions included)

1. Please describe the way(s) in which this criterion is addressed in the course design.

2. Also:

C-2

Please circle, underline, or otherwise mark the information presented in

the most recent course syllabus (or other material you have submitted) that

verifies this description of the grading process--and label this information

"C-1".

Please circle, underline, or otherwise mark the information presented in

the most recent course syllabus (or other material you have submitted) that

verifies this description of the grading process--and label this information

"C-2".

X

X

Literacy and Critical Inquiry [L]

Page 3

ASU - [L] CRITERIA

CCRRIITTEERRIIOONN 33:: The syllabus should include a minimum of two writing

and/or speaking assignments that are substantial in depth, quality, and

quantity. Substantial writing assignments entail sustained in-depth

engagement with the material. Examples include research papers, reports,

articles, essays, or speeches that reflect critical inquiry and evaluation.

Assignments such as brief reaction papers, opinion pieces, reflections,

discussion posts, and impromptu presentations are not considered substantial

writing/speaking assignments.

1. Course Project involves

substantial writing (project

description and sample

student work included). It

involves writing as well as

in-class presentation.

2. Lab 4 on Risk

Management involves

substative writing for last 2

activities involving at least

300 and at least 400 words

respectively.

3. Lab 3 involves

discussing student

perspectives on Software

Process Improvement with

at least 500 words.

4. In a similar manner all

other labs also have

substantial writing

involved.

1. Please provide relatively detailed descriptions of two or more substantial writing or speaking tasks that are included in the

course requirements

2. Also:

C-3

Please circle, underline, or otherwise mark the information presented in

the most recent course syllabus (or other material you have submitted) that

verifies this description of the grading process--and label this information

"C-3".

X

Literacy and Critical Inquiry [L]

Page 4

ASU - [L] CRITERIA

YES NO
Identify Documentation

Submitted

CCRRIITTEERRIIOONN 44:: These substantial writing or speaking assignments should

be arranged so that the students will get timely feedback from the instructor

on each assignment in time to help them do better on subsequent assignments.

Intervention at earlier stages in the writing process is especially welcomed.

Clear grading rubric for all

written work is provided

within the Project and Lab

descriptions.

1. Please describe the sequence of course assignments--and the nature of the feedback the current (or most recent) course

instructor provides to help students do better on subsequent assignments

2. Also:

C-4

Please circle, underline, or otherwise mark the information presented in

the most recent course syllabus (or other material you have submitted) that

verifies this description of the grading process--and label this information

"C-4".

X

Literacy and Critical Inquiry [L]

Page 5

Course Prefix Number Title General Studies

Designation

SER 416 Software Enterprise: Project and Process Management L

Explain in detail which student activities correspond to the specific designation criteria.

Please use the following organizer to explain how the criteria are being met.

Criteria (from
checksheet)

How course meets spirit
(contextualize specific

examples in next column)

Please provide detailed evidence of how course meets
criteria (i.e., where in syllabus)

C-1 The Exercises and Project

categories of assessments on the

syllabus consist primarily for

outcomes directly connected to

the L requirements, such as

writing project management

plans, defect estimation, defect

tracking, risk management,

software process improvement

according to software engineering

standards, and using evidence-

based techniques to evaluate

progress

In the attached syllabus the areas related are highlighted

in yellow.

Project and Lab descriptions (Labs 1 through 4) are

attached with written/presentation work highlighted in

yellow.

C-2

The project and exercises include

activities to critically evaluate

evidence gathered on a project

and apply decision-making

procedures across alternatives

justified by that analysis

In the attached syllabus the areas related are highlighted

in yellow.

Project and Lab descriptions are attached with

written/presentation work highlighted in yellow.

C-3 The writing and oral activities in
the project context are examples

of this. Example project activity

descriptions and student work are

included.

In the attached syllabus the areas related are highlighted
in yellow. Further, the semester project description,

sample student written work, lab descriptions with

grading rubrics are attached outline.

C-4 The course is part of the Software

Enterprise project-based learning

sequence. In Enterprise courses

students apply Kolb's active

learning approach to get rapid

feedback on project activities, and

include metacognition (individual

and team reflections) at frequent

intervals. The Software Enterprise

forms the core curricular design

structure of the BS in SE, has

received NSF and other funding,

and has been published (sample

references provided) in several

Lab descriptions are attached which include grading

rubric highlighted in yellow.

An Enterprise project description is included, and

publications in the software engineering education

research literature are available, including:

1. Gary, K. “The Software Enterprise: Practicing Best

Practices in Software Engineering Education”, The

International Journal of Engineering Education Special

Issue on Trends in Software Engineering Education,

Volume 24, Number 4, July 2008, pp. 705-716.

2. Gary, K., Lindquist, T., Bansal, S., and Ghazarian, A.

“A Project Spine for Software Engineering Curricular

Design”, Proceedings of the 26th Conference on Software

Engineering Education & Training (CSEET 2013), Co-

Literacy and Critical Inquiry [L]

Page 6

venues. located with ICSE 2013, San Francisco, CA, May 2013.

3. Gary, K., “The Software Enterprise: Preparing

Industry-ready Software Engineers” Software

Engineering: Effective Teaching and Learning

Approaches, (book chapter) Ellis, H., Demurjian, S., and

Naveda, J.F., (eds.), Idea Group Publishing. October

2008.

4. Gary, K., Koehnemann, H., and Gannod, B. “The

Software Enterprise: Facilitating the Industry

Preparedness of Software Engineers” National

Conference of the American Society for Engineering

Education (ASEE 2006), Chicago, IL, June 2006.

SER 416 - Project and Process Management

Course description: Project-centric course focusing on applying software process, project management, and technical
leadership. Final course in the software enterprise sequence.

Course Title and Catalog Description

SER 416 Project and Process Management, Spring 2019

Catalog Description

Project-centric course focusing on applying software process, project management, and technical leadership. Final course in the

software enterprise sequence.

1. Contact Information

Instructors: Dr. Kevin Gary, kgary@email.asu.edu, Zoom: https://zoom.us/my/drgary, (480)727-1373

Dr. Tyler Baron, tjbaron@asu.edu

Office: Peralta 230C (Gary), Peralta 230X (Baron)

Class Meeting Time: 12:15-1:30 Mondays and Wednesdays

Classroom: AGBC154

Schedule Line Number: 21404

Class Website: Canvas

Teaching Assistant: Mr. Aditya Vikram, avikram4@asu.edu

2. Office Hours

Dr. Gary Office Hours: TTH 10:30pm-12:30pm, other days/times by appointment

Dr. Baron Office Hours: TBA

TA Office Hours: W 2-4pm and TH 1-3pm in Peralta 208

3. Course Objectives and Expected Learning Outcomes

After successfully completing SER416, the student will (Program Outcomes in parentheses):

CO-1. (ABET-3) Communicate, in oral and written form, project and quality management plans.

CO-2. (ABET-4) Conduct tradeoff analyses to determine the best course of action in scalable projects considering a range of

contextual (global, economic, environmental, societal, etc.) attributes.

CO-3. (ABET-5) Demonstrate competency in establishing and tracking project goals, plans, and objectives.

CO-4. (ABET-6) Analyze and interpret project, process, and quality data to make informed judgements about a software project’s

success trajectory.

CO-5. (SER1) Apply modern project and quality management tools and techniques common to software engineering best practices.

4. Grading Policies

Labs: There will be assigned small team labs counted for the course lab grade. Specific

instructions on the requirements, grading criteria, and submission process will be given

when the assignments are handed out. Lab assignments will be started in-class in small

teams and completed outside of class. After completing as a small team, there will be a

short individual reflection exercise.

Project: Software Enterprise courses are project-based. A class period will be reserved for project kickoff in mid-February, and one

week mid-April is reserved for final class presentations. The project handout will have specific rubrics, but in general the project grade

will be 5% class presentation, 5% peer review, 7.5% written deliverables (based on course modules), and 7.5% critical analysis of

scalable software project and quality data. → C2 and C3

Exams: 2 exams will be given. These exams are scheduled for Wednesday March 13th, and Wednesday May 1 (the scheduled day for

our class on the ASU final exam schedule). The second exam is not cumulative, though understanding of prior material will increase

chances for success in the second exam.

Grade Appeals: Students have the right to appeal a grade in writing. Submit your typed appeal (email is fine) with the graded lab or

exam, stating the reason for the appeal. All appeals must be turned in no later than one week after the grade has been posted.

5. Absence and Make-Up Policies

There is not a mandatory attendance policy for this course. However, assessments under "Labs" are not excused (if you miss the lab

class you cannot turn it in), nor are absences from exams. Students unable to attend class, take exams, or start lab assignments due to a

medical condition must present a doctor's signed excuse and notify the instructor as soon as the condition affects the student's work.

Accommodations will be made for religious observances provided that students notify the instructor at the beginning of the semester

concerning those dates. Students who expect to miss class due to officially university-sanctioned activities should inform the

instructor early in the semester. Alternative arrangements will generally be made for any examinations and other graded in-class

work affected by such absences. Please see ACD 304–04, “Accommodation for Religious Practices” and ACD 304–02, “Missed

Classes Due to University-Sanctioned Activities” for more information.

Assessment Percent of Grade

Labs 35%

Project

Exam 1

25%

20%

Exam 2 20%

Course Syllabus

mailto:gary@email.asu.edu
http://www.asu.edu/aad/manuals/acd/acd304-04.html
http://www.asu.edu/aad/manuals/acd/acd304-02.html

6. Readings, Special Materials, and Required Activities

Readings:

• (Required) Software Engineering (10th ed), Ian Sommerville. Addison-Wesley (2016); ISBN-10: 0-13-394303-8, ISBN-13:

978-0-13-394303-0

• (Required) Additional readings will be posted on the class website.

• (Recommended) The Software Engineering Body of Knowledge (SWEBOK) version 3 (P. Bourque and R.E. Fairley, eds.,

Guide to the Software Engineering Body of Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

Class Schedule:

Wk Topic Lab

1 Quality Mgmt Quality Mgmt

2 Defect Tracking DT/QM

3 Defect Mgmt Defect Estimation

4 Testing PROJECT KICKOFF

5 Open Source OpenSource TechEval

6 Risk Management Risk lab

SPRING BREAK

7 PM Overview MIDTERM

8 WBS WBS

9 Task Sequencing TANs/Critical Paths

10 Task Scheduling PERT/Gantt charts

11 Task Tracking Earned Value Analysis

12 Project presentations this week (6 per class)

13 Postmortem Postmortem analysis

7. Classroom Behavior

Cell phones and pagers must be turned off during class to avoid causing distractions. Exceptions may be accommodated for personal

reasons with advance approval of the instructor. The use of recording devices is permitted during class only with prior approval of the

instructor. Any violent or threatening conduct by an ASU student in this class will be reported to the ASU Police Department and the

Office of the Dean of Students.

8. Academic Integrity

All students in this class are subject to ASU’s Academic Integrity Policy (available at http://provost.asu.edu/academicintegrity) and

should acquaint themselves with its content and requirements, including a strict prohibition against plagiarism. All violations will be

reported to the Dean’s office, who maintain records of all offenses. Students are expected to abide by the FSE Honor Code

(http://engineering.asu.edu/integrity/).

The Student Academic Integrity Policy of Arizona State University requires each student to act with honesty and integrity and to

respect the rights of others in carrying out all academic assignments. There are a number of actions that constitute a violation of the

policy. These actions in this course include, but are not limited to:

1) practicing any form of academic deceit;

2) referring to materials or sources or employing devices (e.g., audio recorders, crib sheets, calculators, solution manuals, or

commercial services) not specifically authorized by the instructor for use during tests, quizzes, homework, and class activities;

3) acting as a substitute for another person in any academic evaluation or using a substitute in any academic evaluation;

4) possessing, buying, selling, or otherwise obtaining or using, without appropriate authorization, a copy of any materials intended to

be used for academic evaluation in advance of its administration;

5) depending on the aid of others to the extent that the work is not representative of the student’s abilities, knowing or having good

reason to believe that this aid is not authorized by the instructor;

6) providing inappropriate aid to another person, knowing or having good reason to believe the aid is not authorized by the instructor;

7) submitting the ideas or work of another person or persons without customary and proper acknowledgment of sources (i.e.,

engaging in plagiarism);

8) permitting one's own ideas or work to be submitted by another person without the instructor’s authorization; or attempting to

influence or change any academic evaluation or record for reasons having no relevance to class achievement.

9) turning in work done by someone else or another pair/group

10) copying work done by someone else or another pair/group

http://www.swebok.org/
http://provost.asu.edu/academicintegrity
http://engineering.asu.edu/integrity/

A common question is the use of material that is "googled" or found on popular sites such as StackOverflow. Items 5 and 7 pertain to

this situation. Most software engineers use reference examples, found in print or online. This is fine as a practice but is not acceptable

in situations where you are using the examples to proxy your understanding of the concepts applied in that assessment (i.e. lab or

project activity). First, if you are uncertain if it is allowable or not, verify directly with the instructor before submitting the assignment.

Second, if it is allowable, you are still required to a) adhere to all originating author's constraints on the use and licensing of the

material, and b) provide proper attribution (full bibliographic reference and proper citation). Failure to do so constitutes a violation of

this Academic Integrity Policy.

Students will be asked to work in small teams on lab and a class project. You are to work with your partners and only your partners as

directed by the instructor; receiving assistance from anyone else other than your partners, teaching assistants, approved tutors, or the

instructor is considered a violation of this Academic Integrity Policy. Further, on any paired/group assessments you remain

individually responsible for the entire solution – you must understand it fully, and there will be no differentiated grades awarded

between the individuals in the pair/group. From an ethics standpoint, you have a professional responsibility to your partner to give

your best effort on each assignment and project deliverable. Failure to do so will be considered an ethics violation.

The penalty for an Academic Integrity Violation (cheating) on a lab or project deliverable will be a reduction of a course letter grade

for the first offense, and failure of the course for a second offense. The penalty for an Academic Integrity Violation (cheating) on an

exam is immediate failure of the course. The penalty for an ethics violation will be a zero for the lab or project deliverable grade. All

violations will be referred to the Dean's Office of the Ira A. Fulton Schools of Engineering.

9. Disability Accommodations

Suitable accommodations will be made for students having disabilities and students should notify the instructor as early as possible if

they will require same. Such students must be registered with the Disability Resource Center and provide documentation to that effect.

10. Additional Notices

Notice: Any information in this syllabus may be subject to change with reasonable advance notice.

Notice: All contents of these lectures, including written materials distributed to the class and recorded videos, are under copyright

protection. These materials may not be sold, distributed, or commercialized without the express permission of the instructor, ASU, and

the Arizona Board of Regents. See ACD 304-06 for more info.

11. Sexual Discrimination

Title IX is a federal law that provides that no person be excluded on the basis of sex from participation in, be denied benefits of, or be

subjected to discrimination under any education program or activity. Both Title IX and university policy make clear that sexual

violence and harassment based on sex is prohibited. An individual who believes they have been subjected to sexual violence or

harassed on the basis of sex can seek support, including counseling and academic support, from the university. If you or someone you

know has been harassed on the basis of sex or sexually assaulted, you can find information and resources at

https://sexualviolenceprevention.asu.edu/faqs.

As a mandated reporter, I am obligated to report any information I become aware of regarding alleged acts of sexual discrimination,

including sexual violence and dating violence. ASU Counseling Services, https://eoss.asu.edu/counseling, is available if you wish

discuss any concerns confidentially and privately.

ADDITIONAL COURSE INFORMATION

Prerequisites

• Formal prerequisite: SER316

• It is helpful to have taken SER415 but it is not a strict prerequisite.

• Command of the English language and an attention to detail. Most of this course grade is assessed through

communication-oriented deliverables in the form of oral and written documents and analyses. These are expected to be

prepared (as taught) in the best practices of the software engineering discipline, and with a level of professionalism

befitting senior students about to complete an engineering degree and perhaps enter the professional workplace.

• A desire to learn and participate in class.

Additional Course Description

Welcome to the Software Enterprise! In this last course of a 5-6 course sequence, you will learn the basic principles of software

process, project, and quality management. The intent is not to make you ready to manage scalable software projects, but to gain an

awareness of the broader contexts of complex engineering projects that involve a multitude of facets (people, processes, techniques,

and tools) and require a methodological approach to informed decision making. It is hoped that this final Software Enterprise

experience will be that last step you need to make the transition from student to contributing software professional!

https://sexualviolenceprevention.asu.edu/faqs
https://eoss.asu.edu/counseling

Contents

Part 1 Introduction to Software Engineering

Chapter 1: Introduction
1.1 Professional software development
1.2 Software engineering ethics
1.3 Case studies

Chapter 2: Software Processes
 2.1 Software process models
 2.2 Process activities
 2.3 Coping with change
 2.4 Process improvement

Chapter 3: Agile Software Development
3.1 Agile methods
3.2 Agile development techniques
3.3 Agile project management
3.4 Scaling agile methods

Chapter 4: Requirements Engineering
4.1 Functional and non-functional requirements
4.2 Requirements engineering processes
4.3 Requirements elicitation
4.4 Requirements specification
4.5 Requirements validation
4.6 Requirements change

Chapter 5: System Modeling
5.1 Context models
5.2 Interaction models
5.3 Structural models
5.4 Behavioral models
5.5 Model-driven engineering

Chapter 6: Architectural Design
6.1 Architectural design decisions
6.2 Architectural views
6.3 Architectural patterns
6.4 Application architectures

Chapter 7: Design and Implementation
7.1 Object-oriented design using the UML

Textbook Table of Contents

7.2 Design patterns
7.3 Implementation issues
7.4 Open source development

Chapter 8: Software Testing
8.1 Development testing
8.2 Test-driven development
8.3 Release testing
8.4 User testing

Chapter 9: Software Evolution
9.1 Evolution processes
9.2 Legacy systems
9.3 Software maintenance

Part 2 System Dependability and Security

Chapter 10: Dependable Systems
10.1 Dependability properties
10.2 Sociotechnical systems
10.3 Redundancy and diversity
10.4 Dependable processes
10.5 Formal methods and system dependability

Chapter 11: Reliability Engineering
11.1 Reliability and availability
11.2 Reliability requirements
11.3 Fault-tolerant architectures
11.4 Programming for reliability
11.5 Reliability testing

Chapter 12: Safety Engineering
12.1 Safety-critical systems
12.2 Safety requirements
12.3 Safety engineering processes
12.4 Safety cases

Chapter 13: Security Engineering
13.1 Security and dependability
13.2 Security and organizations
13.3 Security requirements
13.4 Secure systems design
13.5 Security testing and assurance

Chapter 14: Resilience Engineering
14.1 Cybersecurity
14.2 Sociotechnical resilience
14.3 Resilient systems design

Part 3 Advanced Software Engineering

Chapter 15: Software Reuse
15.1 The reuse landscape
15.2 Application frameworks
15.3 Software product lines
15.4 Application system reuse

Chapter 16: Component-based Software Engineering
16.1 Components and component models
16.2 CBSE processes
16.3 Component composition

Chapter 17: Distributed Software Engineering
17.1 Distributed systems
17.2 Client–server computing
17.3 Architectural patterns for distributed systems
17.4 Software as a service

Chapter 18: Service-oriented Software Engineering
18.1 Service-oriented architectures
18.2 RESTful services
18.3 Service engineering
18.4 Service composition

Chapter 19: Systems Engineering
19.1 Sociotechnical systems
19.2 Conceptual design
19.3 System procurement
19.4 System development
19.5 System operation and evolution

Chapter 20: Systems of Systems
20.1 System complexity
20.2 Systems of systems classification
20.3 Reductionism and complex systems
20.4 Systems of systems engineering

20.5 Systems of systems architecture

Chapter 21: Real-time Software Engineering
21.1 Embedded systems design
21.2 Architectural patterns for real-time systems
21.3 Timing analysis
21.4 Real-time operating systems

Part 4 Software management

Chapter 22: Project management
22.1 Risk management
22.2 Managing people
22.3 Teamwork

Chapter 23: Project planning
23.1 Software pricing
23.2 Plan-driven development
23.3 Project scheduling
23.4 Agile planning
23.5 Estimation techniques
23.6 COCOMO cost modeling

Chapter 24: Quality management
24.1 Software quality
24.2 Software standards
24.3 Reviews and inspections
24.4 Quality management and agile development
24.5 Software measurement

Chapter 25: Configuration management
25.1 Version management
25.2 System building
25.3 Change management
25.4 Release management

Glossary

Index

SER416 Software Enterprise IV Spring 2019

Project Topics and Description due April 14 2019

Objectives:

• Develop deep knowledge of an advanced software engineering topic not covered in class

• Demonstrate communication proficiency (written and verbal).

• Broaden understanding of the role and impact of software engineering in society.

Overview:

As software engineering students in the last (or close to last) semester of study, it is important that you have a

broad understanding of the software engineering profession. To date the majority of your curriculum has

focused on technical skills, mainly programming, software engineering specific skills (the phases of the

software lifecycle process), and “soft skills” including teamwork and communication (through your Enterprise

classes). The intent of this project is to broaden your understanding of the profession through an in-depth

exploration of SE, either through study of an advanced SE topic, or the application of SE in a vertical or

horizontal domain. No matter which choice your team makes, you will follow the same set of activities,

deliverables, and grading rubrics.

Project Topics:

As mentioned above in the Overview you can select from advanced SE, vertical, or horizontal domains.

Advanced SE provides for in-depth exploration in-discipline but not limited to a specific domain. Vertical

domains are domains, or markets, of applications (see https://en.wikipedia.org/wiki/Vertical_market).

Horizontal domains (see same Wikipedia page) support a wide variety of markets.

Advanced SE Topics

The set of advanced SE topics comes mostly from your textbook chapters, see table below. I also added two

special current topics at the bottom.

Topic References Description

Maintenance &

Evolution

Sommerville Ch. 9,

SWEBOKv3 Ch. 5

There should be a specific focus on large-scale systems.

Dependability &

Reliability

Sommerville Ch. 10,11 A project should consider technical approaches and non-technical concerns (e.g. regulatory compliance as

described in Sommerville).

Software Safety Sommerville Ch. 12+27

(web)

The safety of software refers to its ability to operate when failures may lead to a loss of life. The techniques

one employs in this domain (such as formal methods) tend to be specialized based on this requirement.

Security Sommerville Ch. 13, 14 Cybersecurity is a hot career path right now. A project should consider it from an SE perspective, including

not just technical approaches (static analysis) but process approaches (risk management, audits, etc.)

SE Economics SWEBOKv3 Ch. 12 The economics of software engineering has the difficult task of attempting to define specific project costs,

down to the $ per SLOC, for engineered software. This includes all process overhead, most notably quality

improvement factors. I have Capers Jones’ book on the topic.

Scaled Agility SAFe, LeSS, DAD Scaling up Agile. New process models are being defined to help agile projects scale up and out across

organizations. These are 3 of the latest models, and of course there is “standard” Agile practices like “Scrum

of Scrums” to consider.

The advantage of most of these topics is you have ready-made starting points in your textbook, so finding

technical material, case studies, and additional references will be easier.

Vertical SE Applications

As you enter your career you may find you work for a software product or services company in a specific

vertical market, or on a category of software (horizontal). It will behoove your career path to understand as

much as possible about the business of that domain, and the intersection of that domain and your chosen

profession (software engineering).

Course Semester Project Description

https://en.wikipedia.org/wiki/Vertical_market

The list of vertical domains, a brief description, and some starting point suggestions are provided below:

Topic Domain Description

Defense Systems Vertical SE applied to US Department of Defense Systems, including but not limited to logistics, C4I, weapons, etc. A project should

explore the availability and reliability aspects of such systems.

Healthcare Systems Vertical SE applied to clinical life-critical systems such as surgical systems. A project should explore the safety and reliability aspects

of such systems.

Avionics Vertical SE applied to aviation (specifically, commercial airplanes). A project should explore the safety and reliability aspects of such

systems.

Space Vertical SE applied to Satellite and spaceship systems (NASA). A project should explore the availability and reliability aspects of

such systems.

Energy Vertical SE applied to Solar, Hydro, Oil, or Gas management systems. A project should explore the safety and reliability aspects of

such systems.

You will find that chapters 19-21 in your textbook will be helpful to a number of these as I have purposefully

selected system-related domains.

Horizontal SE Applications

As mentioned above, horizontal domains mean you design and create solutions centered around a type of

technology or engineering that may be applied across several verticals (in fact you often see horizontal

companies describe their vertical offerings on their websites). Some interesting horizontal domains are below:

Topic Domain Description

SE in Robotics Horizontal SE in Robotics-based systems, such as industrial robots or medical device robots

SE in IoT Horizontal SE Internet-of-Things systems.

Evolution of Open

Source Software

Horizontal How has OSS changed Software Engineering? How do OSS communities differ in their processes from commercial

entities? What is the Total Cost of Ownership (TCO) of OSS? How does one evaluate the suitability of OSS?

Adaptive & Self-
Managed or

Autonomic Systems

Horizontal SE for Adaptive and Self-Managing Systems is relatively new and considers systems that adapt their behaviors or are
dynamically resilient to operational changes. This fundamentally changes the way we think about software maintenance

and evolution (Sommerville Ch. 9, SWEBOKv3 Ch. 5). SEAMS is a symposium on this topic.

For all projects I have some additional SE textbooks that you may find helpful as well when getting your

starting point of references and background material.

Deliverables:

1. Project report: your team will submit a project report that is at least 20 pages and no more than 30 pages

(not including title page, TOC, or Appendices). The report must be in Microsoft Word .docx format, used

1’’ margins on all 4 sides, Letter (8.5’’x11’’) paper, 12 point Times New Roman font, and 2’’ spacing.

Please see the format specifications at https://advances.asee.org/guide-for-authors/

2. Presentation: your team will present its project in class during the week of April 15. Presentations must be at

least 8 minutes long and no more than 10 minutes long, with 2 minutes reserved for questions.

Due Dates:

• The project report is due Friday April 12th via Canvas submission at 11:59pm

o Teams may submit a draft by Friday April 5th to get feedback on their writing.

• The project presentation materials are due Sunday April 14th via Canvas submission at 11:59pm.

o Presentations will take place in class Monday 4/15 and Wednesday 4/17. The order of

presentations will NOT be specified ahead of time. Presenters will not be allowed to use

materials not turned in by the April 14th submission deadline.

Grading Rubrics:
Area Pts Description Rubric

Paper (76% or 190 points)

Writing (77) 10 Proper spelling, punctuation, and grammar 1 pt deducted for every 3 errors (rounded up)

10 Meets required length 1 pt deducted for every ½ page below page threshold

5 Meets format specifications 1 pt deducted every 2 errors (rounded up). May impact length.

7 Adequate number of references. Minimum
references = 8, At least 4 must be non-Web URLs,
at least 6 must be peer-reviewed / edited content.

1 pt deduction for each reference that does not meet criteria

5 Use of proper citation format according to template. 1 pt deducted for every 2 citation errors (rounded up).

10 Appropriate citations and quotations. 1 pt deducted per error including overuse of direct quotations & missing citations. Multiple
missing citations will be considered plagiarism and subject to an AIV and 0 grade for the paper.

30 Quality. The paper must use clear and concise
phrasing, proper section and paragraph organization
including topic sentences and transition language.

1 pt deduction for each error.

Case studies
(23)

6 Case study 1 is relevant to the paper topic. Case study is either highly relevant, moderately relevant -2 (discusses topic but is not central
theme of the study), slightly relevant (mentions topic) -4 or not relevant at all -6

4 Case study 1 is summarized in sufficient depth Not a length requirement but length can play a role. The case study must be described in enough
depth to make a connection to the paper topic. Point deductions: Excellent 0, Sufficient -1,
Insufficient but discussed -2, Deficient -3, Absent or minimal -4

6 Case study 2 is relevant to the paper topic. Case study is either highly relevant, moderately relevant -2 (discusses topic but is not central
theme of the study), slightly relevant (mentions topic) -4 or not relevant at all -6

4 Case study 2 is summarized in sufficient depth Not a length requirement but length can play a role. The case study must be described in enough
depth to make a connection to the paper topic. Point deductions: Excellent 0, Sufficient -1,
Insufficient but discussed -2, Deficient -3, Absent or minimal -4

3 One case study must be from 2010 or later -1 2005-2009, -2 2000-2004, -3 if pre-2000. The year refers to the case itself, not the year of
publication of the case.

Technical
Content (90)

40 Technical summary. The paper should provide a
detailed technical summary of the area that cites at
least 3 different references. This is expected to be at
least 5 pages long.

2 point deduction for each ½ page below the expected 5 pages (max 12). -3 for each missing
reference, -1 or -2 if reference present but inadequate or deficient (max 9). Technical accuracy:
0 for correct [-1,-3] for inadequate (lacking depth), [-4,-6] for deficient (aspects missing or
incorrect), [-7,-9] for gross incorrectness or missing.

20 Discussion of relevant standards. Standards will
vary by topic, but all topics have multiple relevant
standards (past and present).

Minimum expected standards referenced: 2. -5 for only 1. -2 if standard moderately related to
topic, -4 if standard slightly relevant to topic, -5 if no relevance/incorrect. 5 points for
connecting standard to topic and explaining its significance (does
industry/government/academia/etc. adheres to the standard?)

10 Current and future impact discussion. Papers must
include a section of the popularity or other measure
of significance / importance of this topic.

Current impact explained with evidence: 5 points. Adequate [-1,-2], Deficient [-3,-4],
Missing/Incorrect -5. Future impact explained with evidence: 5 points. Adequate [-1,-2],
Deficient [-3,-4], Missing/Incorrect -5.

20 Discussion of the impact on the phases of the
Software Development Lifecycle (SDLC). Papers
should explain how the topic impacts or emphasizes
two or more phases of the SDLC.

SDLC phase identified and evidence-based discussion presented: 0. Adequate discussion
(phase identified but impact lacks depth) [-1,-5], Deficient discussion (phase identified but
cursory presentation of impact) [-6,-10], Incorrect (aspects of the discussion suffer from
technical deficiencies) [-11,-15], Missing (minimal with phase poorly identified and significant
issues with technical discussion) [-16,-20]. The point breakdowns will be spread over the
number of phases discussed. If only one phase is discussed, halve these breakdowns and -10.

Presentation (24%, or 60 points)

7 2 or more presenters, no presenter more than 60% 1 presenter -4, 1 presenter > 60% -2, Transition(s) between presenters 1 pt

10 Time management and presentation cadence 1 pt deducted for each minute over 10 minutes or under 8 minutes. -1 for hard stop ordered (12
minute, with deduction for no questions). -2 for significantly rushed presentation, -1 for slightly
rushed. -2 for significant deficiency in apportionment of time, -1 for slight deficiency. [-1,-3]
for not speaking clearly and coherently.

9 Handling questions. 2 minutes at the end to handle
questions from the audience

Excellent: 0. Adequate (questions answered to mostly acceptable level) [-1,-3], Deficient (poor
answering of questions, lack of understanding or answering the wrong questions) [-4, -6],
Missing -9. 1 pt deduction per insufficient or over time.

10 Technical summary. Ability to summarize the
technical topic via presentation modality (definition,
example, relation to existing). Expect 3-4 minutes

Excellent: 0. Adequate (conveys sufficient technical content but not in format consumable in
brief presentation) [-1,-3], Deficient (missing technical aspects) [-4, -6], Incorrect (serious
issues with technical correctness) [-7,-9], Missing -10.

10 Case study. Team need only present one of the case
studies from the paper, though both are allowed if
the team chooses (but then both must meet rubric
and team must manage time). Expect 2-3 minutes

Excellent: 0. Adequate (summarizes case and sufficiently connects it to the topic) [-1,-3],
Deficient (summarizes case and insufficiently connects it to the topic) [-4,-6], Incorrect
(significant technical errors in case presentation and/or lack of connection to the topic) [-7,-9],
Missing -10.

7 Current and future impacts summarized. The
presentation should list current and future impacts
and select 1 current and 1 future impact to discuss in
a modest amount of depth. Expect 1-2 minutes

Excellent: 0. Adequate (List of impacts given w/ 1 missing current/future discussion) [-1,-3],
Deficient (incomplete list of impacts w/ no current/future discussion) [-4, -6], Missing -7

7 Identify & connect standards to topic. This may be
in the context of the technical summary if that makes

the presentation flow better. Expect 1-2 minutes.

Excellent: 0. Adequate (Standards presented w/ 1 missing discussion on connection to topic) [-

1,-3], Deficient (incomplete list of standards w/ no connection discussion) [-4, -6], Missing -7

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Quality Management and Defect Tracking

Instructions:

Activities 1 and 2 must be done in a team of 3. Activities 3 and 4 I expect you to do individually. Each student should make an

individual submission by the due date (Tuesday February 5th at 11:59pm) with their copy of all Activities. Please indicate at the top

your team partners. Submission done electronically to Canvas with a file type of .docx, .pptx, .pdf, or OpenOffice (.odt, .odp, .ott, .otp,

.odg).

General Grading Rubrics: → C4

1. I expect written answers to demonstrate proper use of spelling, grammar, punctuation, and active voice.

2. I expect the writing style to be persuasive and evidence-based. It should make a clear coherent argument, report findings

based on evidence, and/or

3. Provide proper attribution in all places you refer to an outside reference. Specifically, include a reference list and cite in IEEE

style (see https://en.wikipedia.org/wiki/IEEE_style).

4. All students are responsible for a team’s shared answers. If the answer is plagiarized all students on the team will receive the

AIV penalty. No grade appeals are allowed based on “I didn’t do that Activity”.

5. Individuals are responsible for Individual Activities. Sharing of answers of these Activities is an AIV.

As quality of writing will be taken into account, I strongly suggest the team work in iterations – at least one iteration to get the

evidence down for each shared Activity, one to discuss the questions requiring discussion (taking a position on something), one to

draft the polished language, and one to polish the presentation (final review). Keep in mind as well that sometimes Individual

Activities rely on team Activities so do not wait until Tuesday night!

Activity 1: Quality Management Standards (12 points)

I posted the IEEE-730 standard on the class website. Review this document, looking for cross-references to other IEEE standards, or

other standards in general. For each major phase of the software lifecycle, find two places in IEEE-730 that pertain to the phase, and

find cross-references to other standards and a description of the QA activities pertaining to the phase. You may find it useful to

Google some of the IEEE standards for summaries, or refer to their descriptions on www.ieee.org. Specifically fill in the following

table:

Software Process
Lifecycle Phase

IEEE-730 section & page
reference

Other (IEEE) standard
references

Description of other activities performed in this phase as discussed in IEEE-730

Requirements •

Analysis & Design

Implementation

Deployment/

Operation

Maintenance

Cross-cutting

“Cross-cutting” here refers to QA activities described in IEEE-730 that apply to more than one, and possibly all, software lifecycle

phases. It is my hope that mapping these activities will give you some guidance on mapping your project deliverables to IEEE-730

areas, and therefore give you a head start on doing your QA plan.

Activity 2: Defect Tracking (22 points)

A. (1) Explain why a software defect is called a bug.

B. (2) In class we discussed Failures – Faults – Errors (Defects). The SWEBOK version 3 identifies 5 categories, not 3. What

are they? How do they overlap with these 3?

C. (9) This blog post: https://blog.capterra.com/top-free-bug-tracking-software/ summarizes 10 open source defect tracking

tools. Pick any 3 and i) provide a key feature summary, ii) define the default roles available in the system (and what features

they support), and iii) create a graph of the default defect-handling states and transitions (like your notes). For (i) and (ii) I am

fine if you provide a table, though make sure you define what the key features are, not just label them.

D. (4) GitHub includes an Issues feature where one can create an issue and label it a bug. GitHub and the larger GitHub

community also post a number of workflows to handle various development patterns. Find 2 GitHub development workflows

related to bug issue handling – describe them and provide a state diagram for each.

E. (6) Agile methods such as Scrum and XP favor practices such as Continuous Integration and Testing through automated unit

tests and automated static analysis. Answer the following:

a. Should all defects found in CI&Test be entered in a defect tracker? Why or why not? Explain. If your answer is

“only some should” then provide a threshold definition.

LAB 1 Description

https://en.wikipedia.org/wiki/IEEE_style
https://blog.capterra.com/top-free-bug-tracking-software/

b. Agile methods, XP in particular, also promotes Pair Programming and informal code reviews. Should all defects

found in Pair Programming / informal code reviews be entered in a defect tracker? Why or why not? Explain. If your

answer is “only some should” then provide a threshold definition.

c. In SER216 you used a “lite” version of the PSP by Watts Humphrey. Humphrey believed in a broad definition of a

defect (see your notes) and in logging all defects, even those found by code review before the code is even compiled.

This is counter to the Agile mindset, however provide a justification as to why this may be a good idea. It may help

to review Humphrey’s motivations in this technical report:

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13751.pdf

Activity 3 (6 points, INDIVIDUAL):

A. In Activity 2 C and D you should have looked at 4 tools. Pick the best and worst tools from amongst these 4 and explain what

specific features of the tool lead you to these conclusions.

B. You also should have a total of 5 state diagrams from Activity 2 C and D, and you have 2 in your notes. Pick the best and

worst state models from these 7 models and explain why you chose the models you did.

C. Draw a state model of your own that takes the best from these models. Explain how you derived this model (what ideas you

got from what other models).

Activity 4 Reflection (10 points, INDIVIDUAL):

A. Describe what defect tracking tool or process your Capstone team is using if you are in the Capstone course. If your team

does not yet have one, indicate what you will recommend to them and why. List your Capstone team members. If you are not

on a Capstone team, then use your SER316 team.

B. Discuss (at least 200 words) your perspective on defect tracking. Is it an important quality process? Is it more or less

important than other quality activities (testing, code reviews, static analysis, etc.)? What do you think the pros and cons are,

and how would you determine the best defect tracking process for a given project? That is, what project attributes will

influence what type of defect tracking you think that project should do?

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Defect Estimation due February 12, 2019

Objectives:
1. Understand how to estimate the total number of defects for a project using the Capture-Recapture method.

2. Know the importance of defect containment by understanding the play between defect injection and removal rates.

Activity 1: Capture-Recapture Method
Part 1: Compute a defect estimate as per the method in the Schofield paper using the defect data in the table below:

Huey Dewey Louie

Defect 1 X X

Defect 2 X

Defect 3 X

Defect 4 X

Defect 5 X X X

Defect 6 X

Defect 7 X

Defect 8 X

Defect 9 X X

Add the needed columns to the table to show your work.

Answer: What is the defect discovery rate for the Huey/Dewey/Louie team? Explain.

Part 2: Compute a defect estimate again, this time from reviews from 4 developers:

Paul John George Ringo

Memory Leak X X

DB connection not closed X X

Does not close file X

Incorrect parameter type X X

Improper indentation X X X X

Lack of code comments X

Null pointer Exception X X X

Type mismatch error X

Incorrect logic condition X X X

Incorrect computation X

Improper use of synch block X

Uses goto X X

Incorrect initialization of var X X

Improper access level X X

Add the needed columns to the table to show your work.

Answer: What is the defect discovery rate for the Beatles team? Explain.

LAB 2 Description

Activity 2: Defect Containment Derivation
Consider the following information about a hypothetical application for PestSoftware Inc.:

• The application has 180,000 lines of code (LOC)

• PestSoftware uses RUP, so it has phases (I)nception, (E)laboration, (C)onstruction, and (T)ransition.

• There is a defect injected for every 15 LOC.

• The defect injection distribution rates per phase are: I = 10%, E = 25%, C = 45%, and T = 20%

• The defect removal rates per phase are: I = 60%, E = 80%, C = 67%, and T = 50%

• The cost ratios of fixing defects are: I:E:C:T:F → 1:5:10:50:100, where F means the defect has made it to “(F)ield

operation”. Assume a defect always costs 1 “unit” to fix if found in phase.

Use this information to answers the following questions.

1. How many total defects exist in the application?

2. How many defects exist per phase?

3. Fill in the matrix below. In this matrix, each entry has 2 cells. Fill in the left one with the number of defects from

the column phase, and the right one with the number of defects removed in this phase.

 Inception Elaboration Construction Transition Total

Injected/Removed Inj Rem Inj Remo Inj Rem Inj Rem Inj Rem

Inception

Elaboration

Construction

Transition

Field operation

As an example: Suppose there are 100 defects in a system. The defect injection rate says that 10%, or 10 of them, were

injected during Inception. Then the left cell of the 1st row/column (Inception/Inception) would be 10. The right cell would

be the defects removed in-phase, which would be 6 since the defect removal rate for Inception is 60%. That would leave 4

defects carried over to Elaboration, entered in row Elaboration and column Inception – and so on.

4. What are the total costs per phase for injected defects? (i.e. how much did all of the defects for Inception cost

you? Elaboration? etc. Keep in mind that a defect fixed in phase costs 1 unit, and ratio from there).

5. What is the cost-per-defect for each phase? You can derive this from your answer to #4.

6. What is the overall project defect removal rate?

Activity 3: Defect Depletion Activity
Some time ago a software engineer named Ed Weller put together a simple Defect Deflection worksheet in Excel. Please

download this sheet. Defect depletion is somewhat like your previous problem, except it examines your specific defect

removal processes and costs between inspection activities in requirements, analysis, and design (high-level and low-level)

and test activities (unit, integration, and system testing). This model does assume a waterfall-like development process (so

when you read the formulas going top-down and left-right, you can see how they are derived from previous activities).

Weller’s model is not based on any established standard or study, just a personal model he posted to a software

engineering quality site. But spreadsheets like these are not uncommon (we had a capstone project with General

Dynamics once where the team had to replace over 15K of Excel macros!).

The spreadsheet has a tab already filled in for Aardvark.org. Create 2 copies of the model on 2 separate tabs (name each

tab for the organization name below. Enter the following data on each yellow highlighted line:

BewareBugs Inc:

Size in KLOC: 1 Req Ana HLD LLD Code Unit Test Integ Test Sys Test

Injected 2.5 3.75 5 15 20 0.5 0.25 0.1

Removal Rate 0.8 0.7 0.5 0.4 0.7 0.3 0.7 0.7

Cost 5 3 3 2 1 1 16 40

Cantankerous Coders, LLC:

Size in KLOC: 1 Req Ana HLD LLD Code Unit Test Integ Test Sys Test

Injected 1.5 2.5 10 45 50 1 0.5 0.5

Removal Rate 0.5 0.5 0.8 0.7 0.9 0.8 0.4 0.4

Cost 2 1 5 3 3 2 12 32

Answer the following:

1. What is Aardvark.org good at? What are they bad at?

2. What is BewareBugs good at? What are they bad at?

3. What is CantankerousCoders good at? What are they bad at?

4. What is the most costly quality problem for Aardvark.org? For BewareBugs? For Cantankerous Coders? Explain.

5. Identify ONE thing you think each organization (including Aardvark.org) needs to do to improve?

Activity 4: INDIVIDUAL Thought Questions
1. Suppose in Part 1 of CRM, that you found out that a) Huey seems to only find coding style errors while Louie

only finds memory-related defects, and b) Dewey was kind of tired so he only skimmed the last 25% of the code.

Would this information shake your faith that the CRM-based estimate you derived was appropriate? Explain why

or why not for both (a) and (b).

2. If you asked to pick only one phase of the software process for PestControl Inc. to improve, what phase would it

be, and what activity would you focus on (injection, discovery, or removal)? Explain your answer to both.

3. Is there any additional information that is missing so far that would have helped you answer #2 better?

4. What are the challenges in applying defect containment models in Agile software development processes? Is there

a way to adapt them to this purpose? I’d like you to answer this question by yourself first, just thinking about it.

Then, using Google as your friend, see what the community says.

Activity 5: Individual Reflection
This activity is to be completed individually by each student separate from their team! Answer the following.

Reflection questions:

1. Do you think CRM is a useful technique to do on real software projects?

2. Do you think CRM will benefit your capstone (316) project? How will it, how will it not? Do you think a different

defect estimation method will work better?

3. In general, what do you think the main benefits and challenges are in defect estimation?

4. In general, what do you think the main benefits and challenges are in defect containment?

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Software Process Improvement

Instructions: Note: Please do Activity 3.1 in class on February 13th!

Activities 1-3 must be done with your Capstone team. Activities 4 and 5 I expect you to do individually. Each student should make an

individual submission by the due date (Tuesday February 19th at 11:59pm) with their copy of all Activities. Please indicate at the top

your team partners. Submission done electronically to Canvas with a file type of .docx, .pptx, .pdf, or OpenOffice.

General Grading Rubrics: → C4

1. I expect written answers to demonstrate proper use of spelling, grammar, punctuation, and active voice.

2. I expect the writing style to be persuasive and evidence-based. It should make a clear coherent argument, report findings

based on evidence, and/or

3. Provide proper attribution in all places you refer to an outside reference. Specifically, include a reference list and cite in IEEE

style (see https://en.wikipedia.org/wiki/IEEE_style).

4. All students are responsible for a team’s shared answers. If the answer is plagiarized all students on the team will receive the

AIV penalty. No grade appeals are allowed based on “I didn’t do that Activity”.

5. Individuals are responsible for Individual Activities. Sharing of answers of these Activities is an AIV.

As quality of writing will be taken into account, I strongly suggest the team work in iterations – at least one iteration to get the

evidence down for each shared Activity, one to discuss the questions requiring discussion (taking a position on something), one to

draft the polished language, and one to polish the presentation (final review). Keep in mind as well that sometimes Individual

Activities rely on team Activities so do not wait until Tuesday night!

Activity 1: Software Process Improvement Standards (11 points)

On Canvas you will find a copy of the IDEAL software process improvement model.

1. On slide 4 of your notes, it talks about process measurement, analysis and change. Identify sections of the IDEAL standard that

discuss each of these aspects and summarize what it says about them. Include references to specific sections and page numbers.

2. On slide 8 of your notes, it describes, at a high level, 5 stages to conducting a software process improvement change. To what

extent do these stages appear in IDEAL (Note: Don’t expect it to be as simple as finding a section named for one of the stages,

like “Process change introduction” – you will have to read and understand to map a section to a stage).

I expect these discussions to be significant and show some depth. If it helps, I expect at least 300 words per each part 1 & 2 or at least

600 words total. Refer to the general grading rubrics on writing above!

Activity 2: Software Process Improvement Examples (12 points)

On Canvas you will find two reports, one by Raytheon and one by Nationwide, written as recipients of the 2016 Watts S. Humphrey

Software Process Achievement Awards. For each report, select any three of the process attributes in Figure 26.2 of Chapter 26 of

Sommerville (also available on Canvas) and discuss how that organization provided a high level of that process attribute. You do not

have to use the same process attributes for each organization. I expect at least 125 words per process attribute per organization, or at

least 750 words total. Refer to the general grading rubrics on writing above!

Activity 3: Software Process Improvement and Agile methods (12 points)

1. DO THIS ONE IN CLASS! Organize yourself in your capstone teams. Execute the “6 hats retrospective” as described here:

http://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective. For the hats that are labeled 10 minutes, change

them to 5 minutes as well. For the time period, instead of the last sprint, simply use the project-to-date. Have a scribe document

the outcome for each step or “hat”. Then write down your conclusions and outcomes as described at the bottom.

2. There are LOTS of websites out there on how to conduct an Agile sprint or project retrospective. Consider this page:

https://blog.lucidmeetings.com/blog/how-to-lead-a-successful-project-retrospective-meeting. Read through the full description,

including the “Step-by-Step” section. Write a persuasive argument for or against retrospectives as defined here as adhering to the

Process measurement, analysis, and change stages discussed in your notes. Specifically, attempt to map what the retrospective

does to each of these areas (measurement, analysis, change), and then critically review whether you think this form of review is a

valid software process improvement technique given this framework. I expect at least a one page writeup. Refer to the general

grading rubrics on writing above!

Activity 4 (5 points, INDIVIDUAL):

In your lab on defect estimation, you had Individual Thought Questions 2 and 3 related to PestSoftware Inc. from Activity 2 of the

same lab. Revisit your answer to 2 and 3 and rewrite it in terms of the GQM paradigm on slides 8 and 9 of your notes.

Activity 5 Reflection (10 points, INDIVIDUAL):

Discuss your perspective on software process improvement. For many students this is a very difficult thing to do as you may not have

a long track record of work experience and/or worked on projects at scale. Drawing from any personal experience you have (work,

school, outside club, any activity you have been involved in for any length of time), discuss what kind of process improvements you

would have like to have seen, and whether you would recommend a GQM-oriented or Agile (human-oriented) process improvement

approach. Then map this back to your opinion on software process improvement. At least 500 words.

LAB 3 Description

https://en.wikipedia.org/wiki/IEEE_style
http://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective
https://blog.lucidmeetings.com/blog/how-to-lead-a-successful-project-retrospective-meeting

SER416 Software Enterprise IV Spring 2019

Risk Management due March 12 2019

Objectives:

• Exercise the steps of the risk management process

• Understand how to use risk analysis techniques to prioritize requirements.

• Gain an awareness of individual personality types and how these play a role in teamwork.

Activity 1: (15 points)

In this activity you will prioritize alternatives to delivering project requirements using the general decision tree approach presented in

Boehm’s paper. Below you are provided data on two hypothetical requirements, “Req1” and “Req2”. It does not matter what these

requirements actually are. The project management team has identified a risk associated with each requirement (Table 1), and also

identified risk mitigation and contingency planning possibilities with respect to the risks and requirements (Table 2). Using this data,

you are to identify the sequence of activities your project should undertake. Specifically, apply Boehm’s model to Req1 and determine

whether it is worthwhile to build a Prototype or not, and to Req2 to determine whether Training Courses are worthwhile.

Risk Req1 Req2

1 Inadequate understanding of user needs 0.5 / 15

2 Poor understanding of needed technology 0.3 / 20

Table 1. P(UO) / L(UO) per risk and requirement. As an example, read the entry in row 1, Req1 as “there is a 50% chance that Risk 1

will cause a loss of 15 business value points”

Risk Mitigation – Risk Reduction/Cost Risk1 Risk2

1 Prototype 0.4 / 5

2 Training courses 0.1 / 5

Table 2. Risk Mitigation actions with risk reduction and cost values.

The 1st value in each cell is the probability by which the risk is reduced, and the 2nd value is the cost of implementing the risk

mitigation strategy. For example, prototyping (Mitigation Plan 1) may reduce Risk1 for Req1 from 0.5 to 0.1 (0.5 – 0.4 = 0.1), but

will come at a cost of 5 story points.

1. For each requirement, create a tree formulating the requirement’s RE using the data in Table 1 and whether it is worthwhile

to apply the mitigation plan in Table 2. State your conclusion for each Risk/Req.

2. Now add a new wrinkle, add a row (risk) to table 1 and a column to table 2 as such:

Risk Req1 Req2

1 Inadequate understanding of user needs 0.5 / 15

2 Poor understanding of needed technology 0.3 / 20

3 Decaying architecture 0.2 / 30 0.1 / 40

Table 3. P(UO) / L(UO) per risk and requirement with new row 3.

Now we have a risk that applies to both requirements. Here is how our mitigation plans help with this new risk:

Risk Mitigation – Risk Reduction/Cost Risk1 Risk2 Risk3

1 Prototype 0.4 / 5 0.1 / 3

2 Training courses 0.2 / 5 0.1 / 2

Table 4. Risk Mitigation actions with risk reduction and cost values, risk 3 added.

Now we have a situation where a single risk impacts more than one requirement, and each mitigation strategy impacts more than one

risk. Revisit your RE and decision trees for each of the mitigation plans to see if your answers change.

Activity 2: (15 points)

Activity 2 expects you to use a risk matrix type approach to determine which Mitigation and Contingency plans

are worth applying to different Risk Categories in a hypothetical organization. It is expected you will use the

matrix on slide 9, and you may also choose to construct your own matrix so you may decorate it with counts

and costs of dealing with the Risk Events of each Risk Category.

LAB 4 Description

Risk Category

/Event

Severity Probability Mitigation

Action

Contingency

Action

Outcome of Actions

PERSONNEL

Lack of knowledge

in this hw/sw

1 A 1, 2 Probability is reduced 3 levels

Insufficient

resources available

3 C 2 7 Probability reduced 1 level

EQUIPMENT

Delivery date slip 2 D 7, 8 Severity reduced to Negligible (4)

Insufficient

configuration

3 B 5, 6 3, 4 Probability reduced 2 levels, Severity reduced 1 level

LOGISTICS

Multiple customer

sites
4 A 9, 11 Probability is reduced 1 level

Physical separation

of team & customer

2 E 10, 11 Probability is now zero

Mitigation / Contingency Plan Actions (Preventative Measures and Contingency Measures columns). Relative

costs of each action are given as HIGH, MEDIUM, or LOW

1. Provide appropriate training. HIGH

2. Hire trained specialists. HIGH

3. Install temporary hardware. MEDIUM

4. Utilize internal hardware temporarily. LOW

5. Purchase additional equipment. HIGH

6. Implement product functionality in a phased manner.

LOW

7. Adjust deadline and get customer buy-off.

MEDIUM

8. Increase estimates for the related tasks HIGH

9. Hold regular meetings with customer. LOW

10. Visit remote sites as needed. MEDIUM

11. Demonstrate incremental results.

MEDIUM

The Severity and Probability columns are coded to match the numbers and letters in the Risk Assessment

Matrix show on slide 9 of your notes.

Answer the following 3 questions based on this table:

Q1: Using the leftmost 3 columns only, indicate which Risk Category (Personnel, Equipment, or Logistics)

presents the most serious problem for the organization and why? Use the risk matrix on slide 9 to help you

explain your answer.

Q2: Now add to the consideration of Q1 the rightmost column (Outcome of Actions) in the table. Do not

consider the Mitigation or Contingency columns yet. Applying the outcomes of the actions, reconsider your

answer to Q1. That is, presuming the application of the Mitigation and/or Contingency plans, the Severity

and/or Probability is impacted in different way. Consider how the risk matrix changes with these new values.

Q3: Now factor in the actual Mitigation and Contingency plans. Specifically, the cost of implementing these

plans is given in the list with each action. Considering how often an action appears in the table, how much it

costs, and the Outcome of Actions (Q2), indicate a) which will be the most expensive category to apply actions

to, and b) whether it is worthwhile to apply the actions given the cost information.

Activity 3: Individual Task (10 points)

Individually take the DISC personality test. You should then map the DISC type to one of the 3 personality

types under Motivation on slide 13 of your PM overview notes. Optionally (only if you are comfortable), I'd

like you to work with a partner (even out of class) and have them take the DISC test pretending that person is

you, and see what result that person gets for you. Finally, and again only if you are comfortable, I'd like you to

work with your capstone team to compose all DISC personality types and see if they are "compatible". Please

submit a summary of your personality results and of the optional discussions in a brief (min 300 words) well-

written summary that adheres to the general grading rubric.

Activity 4: Individual Reflections (10 points)

1. Describe (400 words) how your Capstone (or 316 if you are not in Capstone) team has gone through the

“formin’, stormin’, normin’, and performin” stages of the Tuckman model that is popular in Agile team

practices (ignore “adjourning”). Provide a timeline and the events that exemplify each stage (and I know it

may not be the case that you have gone through all 4 stages yet). Please then share with at least one of your

Capstone team members and discuss similarities and differences in your summaries. Jointly write a 200

word comparison (in can go in each of your individual submissions, but identify the team member).

2. Provide a paragraph min (300 words) that describes how your Capstone team deals with risk, even if you do

not have a formal risk management process. First, is there any discussion of risk in the project management

deliverables you have been asked to produce? Second if yes, do you follow these procedures, and if so, are

they helpful? If you do not have them defined or you do not follow them, then describe how you informally

deal with risk – risk is a reality whether you have a formal plan or not, and it comes in many forms – late on

deadlines, team members not participating, lack of stability in your incremental sprint releases. How does

your team presently deal with these and other risks you can identify?

*** All written deliverables should adhere to the general grading rubrics presented on previous labs for

proper writing and critical/persuasive style! *** → C4

https://discpersonalitytesting.com/free-disc-test/
https://www.frontrowagile.com/blog/posts/120-forming-storming-norming-and-performing-in-a-scrum-team

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Quality Management and Defect Tracking

Instructions:

Activities 1 and 2 must be done in a team of 3. Activities 3 and 4 I expect you to do individually. Each student should make an

individual submission by the due date (Tuesday February 5th at 11:59pm) with their copy of all Activities. Please indicate at the top

your team partners. Submission done electronically to Canvas with a file type of .docx, .pptx, .pdf, or OpenOffice (.odt, .odp, .ott, .otp,

.odg).

General Grading Rubrics:

1. I expect written answers to demonstrate proper use of spelling, grammar, punctuation, and active voice.

2. I expect the writing style to be persuasive and evidence-based. It should make a clear coherent argument, report findings

based on evidence, and/or

3. Provide proper attribution in all places you refer to an outside reference. Specifically, include a reference list and cite in IEEE

style (see https://en.wikipedia.org/wiki/IEEE_style).

4. All students are responsible for a team’s shared answers. If the answer is plagiarized all students on the team will receive the

AIV penalty. No grade appeals are allowed based on “I didn’t do that Activity”.

5. Individuals are responsible for Individual Activities. Sharing of answers of these Activities is an AIV.

As quality of writing will be taken into account, I strongly suggest the team work in iterations – at least one iteration to get the

evidence down for each shared Activity, one to discuss the questions requiring discussion (taking a position on something), one to

draft the polished language, and one to polish the presentation (final review). Keep in mind as well that sometimes Individual

Activities rely on team Activities so do not wait until Tuesday night!

Activity 1: Quality Management Standards (12 points)

I posted the IEEE-730 standard on the class website. Review this document, looking for cross-references to other IEEE standards, or

other standards in general. For each major phase of the software lifecycle, find two places in IEEE-730 that pertain to the phase, and

find cross-references to other standards and a description of the QA activities pertaining to the phase. You may find it useful to

Google some of the IEEE standards for summaries, or refer to their descriptions on www.ieee.org. Specifically fill in the following

table:

Software Process
Lifecycle Phase

IEEE-730 section & page
reference

Other (IEEE) standard
references

Description of other activities performed in this phase as discussed in IEEE-730

Requirements •

Analysis & Design

Implementation

Deployment/

Operation

Maintenance

Cross-cutting

“Cross-cutting” here refers to QA activities described in IEEE-730 that apply to more than one, and possibly all, software lifecycle

phases. It is my hope that mapping these activities will give you some guidance on mapping your project deliverables to IEEE-730

areas, and therefore give you a head start on doing your QA plan.

 I do not have a specific set of entries for the table as there are multiple possibilities. They are to provide 12 entries (2 per phase) for 1

pt each. You may score with ½ pt increments. Please check the section and page number for the reference. Assuming the reference is

there, check for references to any other standards (not just IEEE), and if they have a description that is at least mentioned in that part

of the IEEE-730 spec (which is on Canvas).

Activity 2: Defect Tracking (22 points)

A. (1) Explain why a software defect is called a bug. They should tell the story of a bug getting caught in a vacuum tube (1/2

pt). They should use complete sentences and provide a reference (1/2 pt)

B. (2) In class we discussed Failures – Faults – Errors (Defects). The SWEBOK version 3 identifies 5 categories, not 3. What

are they? How do they overlap with these 3?

The SWEBOK in section 3.2 of chapter 10 describes Computational Error, Error, Defect, Fault, and Failure. While 3 of

the terms are in the notes, only Failure really has the same definition. Error is slightly modified to mean “human

action”, while Fault is a bug, which is a completely different definition than the notes. Computational Error and Defect

together mean what the notes definition of what Error means.

LAB 1 Key provided to students as feedback

https://en.wikipedia.org/wiki/IEEE_style

In terms of grading, ½ pt for identifying the 2 new terms, ½ pt for identifying that Failure is basically the same, ½ pt for

identifying that Fault means something completely different (what notes meant by Error), and ½ pt for noting Error is

restricted to human action. You may get some answers that you have to read carefully as they may not say it the same

way I am, so take the time to understand. Be lenient in your interpretation; if it loosely connected to my criteria give

them the credit but provide written feedback.

C. (9) This blog post: https://blog.capterra.com/top-free-bug-tracking-software/ summarizes 10 open source defect tracking

tools. Pick any 3 and i) provide a key feature summary, ii) define the default roles available in the system (and what features

they support), and iii) create a graph of the default defect-handling states and transitions (like your notes). For (i) and (ii) I am

fine if you provide a table, though make sure you define what the key features are, not just label them.

3 defect tracking tools are required, and 3 criteria per tool = 9 points (1 pt each). I am looking more for completeness

than for you to go check each tool. In fact what I would do is sort by the tools selected and then compare answers

between teams for consistency. The teams that gave answers for a tool much different than others will be the ones you

may need to go to the tool’s documentation to check. Also I am allowing them to use a cut-and-pasted graph for (iii), but

make sure what they give you is a state diagram, not some other kind of diagram. Some may not even know what they

were looking for!

D. (4) GitHub includes an Issues feature where one can create an issue and label it a bug. GitHub and the larger GitHub

community also post a number of workflows to handle various development patterns. Find 2 GitHub development workflows

related to bug issue handling – describe them and provide a state diagram for each.

There are a LOT of GitHub workflows out there, so I can’t give a specific criteria. You have to check that they identified

2 workflows (1/2 pt each), provided references for each workflow found (1/2 pt each), describe them and how they could

tie in some way to issue handling (1/2 pt each), and provide a state or flow diagram (I allowed flow-style diagrams like

an Activity diagram) for each (1/2 pt each)

E. (6) Agile methods such as Scrum and XP favor practices such as Continuous Integration and Testing through automated unit

tests and automated static analysis. Answer the following:

a. Should all defects found in CI&Test be entered in a defect tracker? Why or why not? Explain. If your answer is

“only some should” then provide a threshold definition.

b. Agile methods, XP in particular, also promotes Pair Programming and informal code reviews. Should all defects

found in Pair Programming / informal code reviews be entered in a defect tracker? Why or why not? Explain. If your

answer is “only some should” then provide a threshold definition.

c. In SER216 you used a “lite” version of the PSP by Watts Humphrey. Humphrey believed in a broad definition of a

defect (see your notes) and in logging all defects, even those found by code review before the code is even compiled.

This is counter to the Agile mindset, however provide a justification as to why this may be a good idea. It may help

to review Humphrey’s motivations in this technical report:

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13751.pdf

Question E is really free-form writing. Please score 3 of the 6 points based on the General Grading Criteria 1-3. Specifically:

- 2 spelling mistakes = ½ pt, 1 point max for 4 or more

- 2 grammar mistakes = ½ pt, 1 point max for 4 or more

- 2 missing references (where it is clear they took from somewhere but did not cite) ½ point, 1 point max for 4 or more

- If you find the answer is plagiarized in any way, deduct all 6 points. You can usually detect this by seeing wording that reads

out of place (it doesn’t sound like what a student would write). If it is quoted and not cited, ½ pt. If it is cited but not quoted

(which they need to do if anything is copied verbatim), ½ pt. If they do not use quotations AND do not cite, it is plagiarism.

- The other 3 points are 1 point each for a, b, c. In a and b, we are looking for persuasive writing, meaning they should state

an answer and then defend with some line of justifiable reasoning (and hopefully evidence of some kind). We’ll accept

whatever answer and reasoning (as long as it is not nonsense) if it is presented persuasively. Part c) needs to be graded like

this as well, but they will probably give you Humphrey’s reasoning which is basically you cannot estimate what you do not

measure first, so if you do not log everything you cannot derive good future estimates.

Activity 3 (6 points, INDIVIDUAL):

A. In Activity 2 C and D you should have looked at 4 tools. Pick the best and worst tools from amongst these 4 and explain what

specific features of the tool lead you to these conclusions.

B. You also should have a total of 5 state diagrams from Activity 2 C and D, and you have 2 in your notes. Pick the best and

worst state models from these 7 models and explain why you chose the models you did.

C. Draw a state model of your own that takes the best from these models. Explain how you derived this model (what ideas you

got from what other models).

Another open-ended question, 2 points each part. A and B are 1 point for the “Pick” and 1 point for the explanation. As in the

previous question the explanation must be properly written (spelling and grammar ½ pt) and use a persuasive style (1/2 pt). For part

C, 1 point for having a valid state model (they may give you a non-state diagram), and 1 point for an explanation with the same

persuasive style rubric.

https://blog.capterra.com/top-free-bug-tracking-software/

Activity 4 Reflection (10 points, INDIVIDUAL):

A. Describe what defect tracking tool or process your Capstone team is using if you are in the Capstone course. If your team

does not yet have one, indicate what you will recommend to them and why. List your Capstone team members. If you are not

on a Capstone team, then use your SER316 team.

B. Discuss (at least 200 words) your perspective on defect tracking. Is it an important quality process? Is it more or less

important than other quality activities (testing, code reviews, static analysis, etc.)? What do you think the pros and cons are,

and how would you determine the best defect tracking process for a given project? That is, what project attributes will

influence what type of defect tracking you think that project should do?

For part A (4 pts), only one person is in SER316 (Mitchell Roberts) so I believe the rest should have a capstone reference in the

response. 3 points for either describing an existing process or indicating what you will recommend and why. Again, open-ended,

accept anything that is coherent and sounds reasonably justified. 1 additional point for proper spelling and grammar.

For part B (6 pts):

- ½ pt deduction for < 180 words (I’ll accept 180-199 as OK – note Word has a count tools built in if you highlight the answer).

- Additional ½ point for < 140, and another ½ for < 100, and another ½ pt for < 60 (2 pts max)

- 1 pt for indicating pros and cons, ½ point deduction for skipping pros, ½ point deduction for skipping cons

- 1 point for answering “Is it more or less important than other quality activities (testing, code reviews, static analysis, etc.)?” –

again they can form an opinion but they have to answer the question somewhere.

- 1 point for “how would you determine…That is, what project attributes…?”. Again I know this is very subjective, and I do

expect you to be lenient, but basically all I am asking are what are the distinct descriptors of a project that would influence

their decision? It could be anything from what operating system they are on to the experience of developers to whether the team

is distributed – almost anything SE-related that could impact a project team I will accept as long as the explanation is

coherent. You may grade at ½ pt intervals subjectively.

- The final point is for proper spelling and grammar (and citations if relevant). Use the rubric above for 2E.

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Defect Estimation due February 12, 2019

Objectives:
1. Understand how to estimate the total number of defects for a project using the Capture-Recapture method.

2. Know the importance of defect containment by understanding the play between defect injection and removal rates.

You may do this lab with 1 other partner who is NOT on your project team.

Activity 1: Capture-Recapture Method (9 points)
Part 1 (4): Compute a defect estimate ala the Schofield paper using the defect data in the table below:

Huey Dewey Louie A B C

Defect 1 X X X X X

Defect 2 X X

Defect 3 X X

Defect 4 X X

Defect 5 X X X X X X

Defect 6 X X

Defect 7 X X

Defect 8 X X

Defect 9 X X X X X

|A| = 7, |B| = 5, |C| = 3, so 7/X = 3/5, 3X = 35, or X = 11.67 (round up to 12).

So, the team found 9, estimate there are 12, for a defect discovery rate of 75%

1 point for “9”, 1 point for “75%” defect discovery rate, 2 points for the added columns A/B/C. Deduct ½ pt for each X

missing or in the wrong place up to max of 2 points

Add the needed columns to the table to show your work.

Answer: What is the defect discovery rate for the Huey/Dewey/Louie team? Explain.

Part 2 (6): Compute a defect estimate again, this time from reviews from 4 developers:

Paul John George Ringo A B C

Memory Leak X X X X X

DB connection not closed X X X X X

Does not close file X X

Incorrect parameter type X X X X X

Improper indentation X X X X X X X

Lack of code comments X X

Null pointer Exception X X X X X X

Type mismatch error X X

Incorrect logic condition X X X X X X

Incorrect computation X X

Improper use of synch block X X

Uses goto X X X

Incorrect initialization of var X X X X X

Improper access level X X X

|A| = 9, |B| = 12, |C| = 7. 9/X = 7/12, 7x = 108, X = 15.429, so round to 15. The team found 14 of 15 possible

defects for a defect discovery rate of 93.3%.

1 point for 15, 1 point for defect discovery rate of 93%, 3 points for columns in table. Deduct ½ pt for each X

missing or in the wrong place up to max of 3 points. Note if they created 4 columns they did it wrong!

Add the needed columns to the table to show your work.

Answer: What is the defect discovery rate for the Beatles team? Explain.

Lab 2 Key provided to students as feedback

Activity 2: Defect Containment Derivation (13 points)
Consider the following information about a hypothetical application for PestSoftware Inc.:

• The application has 180,000 lines of code (LOC)

• PestSoftware uses RUP, so it has phases (I)nception, (E)laboration, (C)onstruction, and (T)ransition.

• There is a defect injected for every 15 LOC.

• The defect injection distribution rates per phase are: I = 10%, E = 25%, C = 45%, and T = 20%

• The defect removal rates per phase are: I = 60%, E = 80%, C = 67%, and T = 50%

• The cost ratios of fixing defects are: I:E:C:T:F → 1:5:10:50:100, where F means the defect has made it to “(F)ield

operation”. Assume a defect always costs 1 “unit” to fix if found in phase.

Use this information to answers the following questions.

1. (1) How many total defects exist in the application? 2216 1 pt
2. (2) How many defects exist per phase? 2 pts. I = 16, E = 100, C = 900, T = 1200. ½ point off for each incorrect.

3. (5) Fill in the matrix below. In this matrix, each entry has 2 cells. Fill in the left one with the number of defects

from the column phase, and the right one with the number of defects removed in this phase. 5 pts. There are 10
cells to check really, highlight below. ½ point for each correct. Look for a pattern if they make a mistake. Often

students will incorrectly apply a ratio or not compute the next row starting point correctly (for example, not

understanding Elaboration starts with 480 defects as that is 1200-720)If it is a single mistake repeated, only

deduct 1 pt total.

 Inception Elaboration Construction Transition Total

Injected/Removed Inj Rem Inj Rem Inj Rem Inj Rem Inj Rem

Inception 1200 720 1200 720

Elaboration 480 384 3000 2400 3480 2784

Construction 96 64 600 400 5400 3600 6096 4064

Transition 32 16 200 100 1800 900 2400 1200 4432 2216

Field operation 16 100 900 1200 2216

As an example: Suppose there are 100 defects in a system. The defect injection rate says that 10%, or 10 of them, were

injected during Inception. Then the left cell of the 1st row/column (Inception/Inception) would be 10. The right cell would

be the defects removed in-phase, which would be 6 since the defect removal rate for Inception is 60%. That would leave 4

defects carried over to Elaboration, entered in row Elaboration and column Inception – and so on.

4. (2) What are the total costs per phase for injected defects? (i.e. how much did all of the defects for Inception cost

you? Elaboration? etc. Keep in mind that a defect fixed in phase costs 1 unit, and ratio from there).

5. (2) What is the cost-per-defect for each phase?

Inception = 720 + 384*5 + 64*10 + 16*50 + 16*100 = 5680, or 4.73 per defect

Elaboration = 2.4k + 400*2 + 100*10 + 100*20 = 6200, or 2.07 per defect

Construction = 3.6k + 900*5 + 900*10 = 17,100, or 3.17 per defect

Transition = 1.2k + 1.2k*2 = 3600 = 1.5 per defect

Note that the ratios between phases are used. So for example, when doing Elaboration, 2400 is the base cost, so the next
up (400 in Construction) is * 2 because the ratio is 5:10. Note that many folks may have misinterpreted this specific part

of the costs. If they applied the 1:5:10:50:100 straight down the table (one per row) accept it anyway. Bold is #4 (2 pts,

½ per each), decimal value is per defect #5, also ½ each for 2 points.

6. What is the overall project defect removal rate? 1 point, should be expressed as a percentage.

Overall: 12,000 defects injected, 9784 removed (720+2784+4064+2216), 71. 1%

Activity 3: Defect Depletion Activity (12 points)
Some time ago a software engineer named Ed Weller put together a simple Defect Deflection worksheet in Excel. Please

download this sheet. Defect depletion is somewhat like your previous problem, except it examines your specific defect

removal processes and costs between inspection activities in requirements, analysis, and design (high-level and low-level)

and test activities (unit, integration, and system testing). This model does assume a waterfall-like development process (so

when you read the formulas going top-down and left-right, you can see how they are derived from previous activities).

Weller’s model is not based on any established standard or study, just a personal model he posted to a software

engineering quality site. But spreadsheets like these are not uncommon (we had a capstone project with General

Dynamics once where the team had to replace over 15K of Excel macros!).

The spreadsheet has a tab already filled in for Aardvark.org. Create 2 copies of the model on 2 separate tabs (name each

tab for the organization name below. Enter the following data on each yellow highlighted line:

BewareBugs Inc:

Size in KLOC: 1 Req Ana HLD LLD Code Unit Test Integ Test Sys Test

Injected 2.5 3.75 5 15 20 0.5 0.25 0.1

Removal Rate 0.8 0.7 0.5 0.4 0.7 0.3 0.7 0.7

Cost 5 3 3 2 1 1 16 40

Cantankerous Coders, LLC:

Size in KLOC: 1 Req Ana HLD LLD Code Unit Test Integ Test Sys Test

Injected 1.5 2.5 10 45 50 1 0.5 0.5

Removal Rate 0.5 0.5 0.8 0.7 0.9 0.8 0.4 0.4

Cost 2 1 5 3 3 2 12 32

1 point for each tab (2 pts total) in the submitted spreadsheet for BewareBugs and Cantankerous Coders Really they just

had to transcribe this table data into copies of the sheet I gave them.

Answer the following: (2 points each) I wasn’t clear enough, they could have answered this 2 ways – which Development
Phases, or which defect process – Inspections or Testing. So accept either.

1. What is Aardvark.org good at? What are they bad at? Aardvark is good at Requirements, Analysis, and Unit

Testing. These all have low costs. They are poor at LLD and System Test, and to a certain extent HLD and Code.
In general good at Testing and bad at Inspections.

2. What is BewareBugs good at? What are they bad at? BB is good at unit test and to some degree Analysis and
HLD. They are very bad at Integration and System Test. In general good at Inspections and bad at Testing.

3. What is CantankerousCoders good at? What are they bad at? CC is good at requirements, analysis, and all forms

of testing. They are bad at Code and LLD. They are poor at Inspections, much stronger in Testing.

4. What is the most costly quality problem for Aardvark.org? For BewareBugs? For Cantankerous Coders? Explain.

For Aardvark it is Code (71) though one could argue these values are not normalized against the amount of work
invested in each phase. Considering that and the objectives of the phase, System Test look pretty poor. For BB,

Integration Test stands out as most costly. For CC, Coding stands out and so does LLD, but also relatively

speaking HLD is much higher earlier in the process that the other 2 organizations.
5. Identify ONE thing you think each organization (including Aardvark.org) needs to do to improve? This is really

just the other side of the coin for question 4. They should name a practice that impacts the phase they said was the
most costly.

Activity 4: INDIVIDUAL Thought Questions (8 points)
As these are individual thought questions, I will award a point on each for any well-phrased presentation (according to

the general writing rubrics). The other point is for whether that presentation has merit – particularly for 2-4 where their

answer doesn’t have to agree with my answer, but it does have to be evidence-based.

1. (2) Suppose in Part 1 of CRM, that you found out that a) Huey seems to only find coding style errors while Louie

only finds memory-related defects, and b) Dewey was kind of tired so he only skimmed the last 25% of the code.

Would this information shake your faith that the CRM-based estimate you derived was appropriate? Explain why

or why not for both (a) and (b).

These changes do affect the CRM process. Recall that CRM is based on a few assumptions, such as the “marked”

population being evenly distributed throughout the entire population. Here this means that the defects you are discovering
are “representative” of the entire population of defects. But, these assumptions skew what defects are discovered, and so

may skew the results.

2. (2) If you asked to pick only one phase of the software process for PestControl Inc. to improve, what phase would

it be, and what activity would you focus on (injection, discovery, or removal)? Explain your answer to both.

There could be a variety of correct answers for this, I am looking for how you justified the answer. You could argue that a

lower defect injection rate for a phase is best, or a better defect discovery rate, or lowering the cost-per-defect ratio. To
support your argument, you should “run some numbers”. While one could get elaborate with a sim model or a

spreadsheet calculation to show what is best, I am merely expecting you to try a few alternatives and weight the results.

3. (2) Is there any additional information that is missing so far that would have helped you answer #2 better?

The main information that is missing is the cost of improving each of the above activities (injection, discovery, removal).

You only know if the improvement is worth it if you can amortize the cost of the process improvement w.r.t. your data. At
some point, extra investment may reach a point of diminishing returns.

4. (2) What are the challenges in applying defect containment models in Agile software development processes? Is

there a way to adapt them to this purpose? I’d like you to answer this question by yourself first, just thinking

about it. Then, using Google as your friend, see what the community says.

This is a persuasive argument question. For the 1st question, there are several challenges, most notably that phases are

gone. Yet one could argue that you could map user story development, construction tasks, or unit tests to different phases.
So for 2 points we’ll accept either position, but they must make a coherent argument.

Activity 5: Individual Reflection (8 points)
This activity is to be completed individually by each student separate from their team! Answer the following.

Reflection questions:

1. Do you think CRM is a useful technique to do on real software projects?

2. Do you think CRM will benefit your capstone (316) project? How will it, how will it not? Do you think a different

defect estimation method will work better?

3. In general, what do you think the main benefits and challenges are in defect estimation?

4. In general, what do you think the main benefits and challenges are in defect containment?

2 points per question, 1 point on general writing rubrics. The other point really for just answering the question in some
coherent way. If you are not sure ask.

SER416 Software Enterprise IV: Process and Project Management Spring 2019

Lab: Software Process Improvement

Instructions: Note: Please do Activity 3.1 in class on February 13th!

Activities 1-3 must be done with your Capstone team. Activities 4 and 5 I expect you to do individually. Each student should make an

individual submission by the due date (Tuesday February 19th at 11:59pm) with their copy of all Activities. Please indicate at the top

your team partners. Submission done electronically to Canvas with a file type of .docx, .pptx, .pdf, or OpenOffice.

General Grading Rubrics:

1. I expect written answers to demonstrate proper use of spelling, grammar, punctuation, and active voice.

2. I expect the writing style to be persuasive and evidence-based. It should make a clear coherent argument, report findings

based on evidence, and/or

3. Provide proper attribution in all places you refer to an outside reference. Specifically, include a reference list and cite in IEEE

style (see https://en.wikipedia.org/wiki/IEEE_style).

4. All students are responsible for a team’s shared answers. If the answer is plagiarized all students on the team will receive the

AIV penalty. No grade appeals are allowed based on “I didn’t do that Activity”.

5. Individuals are responsible for Individual Activities. Sharing of answers of these Activities is an AIV.

As quality of writing will be taken into account, I strongly suggest the team work in iterations – at least one iteration to get the

evidence down for each shared Activity, one to discuss the questions requiring discussion (taking a position on something), one to

draft the polished language, and one to polish the presentation (final review). Keep in mind as well that sometimes Individual

Activities rely on team Activities so do not wait until Tuesday night!

Activity 1: Software Process Improvement Standards (11 points)

On Canvas you will find a copy of the IDEAL software process improvement model.

1. On slide 4 of your notes, it talks about process measurement, analysis and change. Identify sections of the IDEAL standard that

discuss each of these aspects and summarize what it says about them. Include references to specific sections and page numbers.

2. On slide 8 of your notes, it describes, at a high level, 5 stages to conducting a software process improvement change. To what

extent do these stages appear in IDEAL (Note: Don’t expect it to be as simple as finding a section named for one of the stages,

like “Process change introduction” – you will have to read and understand to map a section to a stage).

I expect these discussions to be significant and show some depth. If it helps, I expect at least 300 words per each part 1 & 2 or at least

600 words total. Refer to the general grading rubrics on writing above!

300 words Q1 & Q2 1 pt each (2), 2 pt deduction if < 200. Proper spelling punctuation and grammar 3 pts – deduct ½ point per each

3 such errors you find with Word’s checker tool up to a max of 18 errors (3 pts).

For Q1 (3 pts), there are many places in the IDEAL standard that talk about process measurement, analysis, and change – however a

simple keyword search is not the way to reveal them. Instead, just look at the Table of Contents – Chapter 2 is mostly Measurement,

Chapter 3 mostly Analysis, Chapter 4 mostly Change – these are not hard and fast mappings, but I would expect to see this pattern in

student responses. I cannot provide a full mapping of all the places these appear as the standard is too long, so instead look for this

pattern and selectively check some answers by going to the document.

For Q2, the 5 stages are

1. Improvement identification

2. Improvement prioritization

3. Process change introduction

4. Process change training

5. Change tuning

1 pt for each stage. If they can make a reasonable connection give them the point for the stage. Basically we are asking them to map

much like I did for Q1 – the fastest way to do it would simply go to the ToC. Chapter 2 is mostly stage 1, as is first ½ of chapter 3.

Chapter 3 2nd half gets into stage 2. Stages 3 and 4 are in Chapter 4, and Stage 5 (loosely interpreted) could be found in Chapters 5

and 6. That is a mapping pattern I would look for, but again you will have to read each stage answer to see if a plausible connection

is there as it is not possible to write out all the possible connections.

Activity 2: Software Process Improvement Examples (12 points)

On Canvas you will find two reports, one by Raytheon and one by Nationwide, written as recipients of the 2016 Watts S. Humphrey

Software Process Achievement Awards. For each report, select any three of the process attributes in Figure 26.2 of Chapter 26 of

Sommerville (also available on Canvas) and discuss how that organization provided a high level of that process attribute. You do not

have to use the same process attributes for each organization. I expect at least 125 words per process attribute per organization, or at

least 750 words total. Refer to the general grading rubrics on writing above!

Again, open-ended grading, and it is not possible for me to enumerate all the attributes and all the places possibly discussed in the 2

reports. So grading this is more about checking what they claim and seeing if it is plausible.

Lab 3 Key provided to students as feedback

https://en.wikipedia.org/wiki/IEEE_style

(3) 125 words per process attribute – ½ point deduction for each that fails to get 100 words (we will give some slack room)

(3) Again check for spelling, grammar, and punctuation, deduct ½ point for every 3 defects up to a max of 3 points.

(6) 3 process attributes x 2 reports = 6 points, 1 per process attribute. Read the explanation and verify plausibility of the connection.

The bar remains low – “plausibility”, which again means they wrote an argument for a mapping of an attribute that one can see a

possible connection based on the cited areas of the report, even if we would not agree with it. Deductions are really meant for places

where it was clear the team also makes a cursory connection by keyword without any effort.

Activity 3: Software Process Improvement and Agile methods (12 points)

1. DO THIS ONE IN CLASS! Organize yourself in your capstone teams. Execute the “6 hats retrospective” as described here:

http://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective. For the hats that are labeled 10 minutes, change

them to 5 minutes as well. For the time period, instead of the last sprint, simply use the project-to-date. Have a scribe document

the outcome for each step or “hat”. Then write down your conclusions and outcomes as described at the bottom.

2. There are LOTS of websites out there on how to conduct an Agile sprint or project retrospective. Consider this page:

https://blog.lucidmeetings.com/blog/how-to-lead-a-successful-project-retrospective-meeting. Read through the full description,

including the “Step-by-Step” section. Write a persuasive argument for or against retrospectives as defined here as adhering to the

Process measurement, analysis, and change stages discussed in your notes. Specifically, attempt to map what the retrospective

does to each of these areas (measurement, analysis, change), and then critically review whether you think this form of review is a

valid software process improvement technique given this framework. I expect at least a one page writeup. Refer to the general

grading rubrics on writing above!

Q1 – 7 points. 1 point for capturing some for each “hat (6 hats), and 1 point for the conclusions and outcomes. Really every team that

was there should get the 6 points as they were doing the steps, unless they poorly documented things. For conclusions and outcomes,

they should have a reasonable summary of what they found out and what they will take back to their capstone team. I did not put a

word limit on it, but I would expect more than 2 sentences. They should at least have a short paragraph tied back to the process.

Q2 – 5 points. 1 point for 1 page, 2 points for writing rubrics above (spelling grammar punctuation again but only up to 2 points off).

2 points for the answer. The key here is persuasive argument. This means that have to write in a style that tries to convince the reader

(you). If they just summarize or do not take a position, deduct 1 point. I chose this blog post because it is the opposite of the SPI

methods and processes like CMM, IDEAL, and what the textbook discusses – the process uses more human anecdotal input and an

informal structure and treats the process more as a social exercise that as a tradition process improvement process (1 point).

Activity 4 (5 points, INDIVIDUAL):

In your lab on defect estimation, you had Individual Thought Questions 2 and 3 related to PestSoftware Inc. from Activity 2 of the

same lab. Revisit your answer to 2 and 3 and rewrite it in terms of the GQM paradigm on slides 8 and 9 of your notes.

Check they went back to their lab 2, as they may not have worked with the same team. Rewriting in terms of the GQM paradigm

means simply rewriting their existing answer in terms of Goals, Questions, and Measures. Check they follow this format (2 points),

and it still reflective of their previous answer (2 points). The last point is ½ per each 3 spelling, grammar, punctuation errors as

before.

Activity 5 Reflection (10 points, INDIVIDUAL):

Discuss your perspective on software process improvement. For many students this is a very difficult thing to do as you may not have

a long track record of work experience and/or worked on projects at scale. Drawing from any personal experience you have (work,

school, outside club, any activity you have been involved in for any length of time), discuss what kind of process improvements you

would have like to have seen, and whether you would recommend a GQM-oriented or Agile (human-oriented) process improvement

approach. Then map this back to your opinion on software process improvement. At least 500 words.

2 points 500 words, 1.5 points < 400, 1 point < 300, 0.5 points if < 200, 0 < 100.

1 point for spelling grammar, punctuation, 3 defects per ½ point.

2 points for sharing a personal process experience

2 points for suggesting process improvements

1 point for GQM or Agile

2 points for mapping back to the originally expressed opinion (perspective of sentence 1).

http://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective
https://blog.lucidmeetings.com/blog/how-to-lead-a-successful-project-retrospective-meeting

SER416 Software Enterprise IV Spring 2019

Risk Management due March 12 2019

Objectives:

• Exercise the steps of the risk management process

• Understand how to use risk analysis techniques to prioritize requirements.

• Gain an awareness of individual personality types and how these play a role in teamwork.

Activity 1: (15 points)

In this activity you will prioritize alternatives to delivering project requirements using the general decision tree approach presented in

Boehm’s paper. Below you are provided data on two hypothetical requirements, “Req1” and “Req2”. It does not matter what these

requirements actually are. The project management team has identified a risk associated with each requirement (Table 1), and also

identified risk mitigation and contingency planning possibilities with respect to the risks and requirements (Table 2). Using this data,

you are to identify the sequence of activities your project should undertake. Specifically, apply Boehm’s model to Req1 and determine

whether it is worthwhile to build a Prototype or not, and to Req2 to determine whether Training Courses are worthwhile.

Risk Req1 Req2

1 Inadequate understanding of user needs 0.5 / 15

2 Poor understanding of needed technology 0.3 / 20

Table 1. P(UO) / L(UO) per risk and requirement. As an example, read the entry in row 1, Req1 as “there is a 50% chance that Risk 1

will cause a loss of 15 business value points”

Risk Mitigation – Risk Reduction/Cost Risk1 Risk2

1 Prototype 0.4 / 5

2 Training courses 0.1 / 5

Table 2. Risk Mitigation actions with risk reduction and cost values.

The 1st value in each cell is the probability by which the risk is reduced, and the 2nd value is the cost of implementing the risk

mitigation strategy. For example, prototyping (Mitigation Plan 1) may reduce Risk1 for Req1 from 0.5 to 0.1 (0.5 – 0.4 = 0.1), but

will come at a cost of 5 story points.

1. For each requirement, create a tree formulating the requirement’s RE using the data in Table 1 and whether it is worthwhile

to apply the mitigation plan in Table 2. State your conclusion for each Risk/Req.

I will send a sketch of my 2 trees I did freehand. I also let them draw theirs freehand. There can be some variation in the tree – for

example I do not show the 2nd branch on the 2nd level of the tree as it is the case the Loss value will be zero, thereby making the entire

Risk Exposure (RE) value 0 for that branch, so I don’t think it is worth including. But many students will and that is OK. Also, another

variation is some may have written a tree per mitigation strategy (Table 2 above), as in “prototype or do not prototype” for tree 1,

and “train or do not train” for the other. This should be fine – the math should work out exactly the same as they impact separate

risks from table 1. Rubric:

a) 2 points for any attempt at each of the 2 tables (4 points total) even if incorrect

b) 1 point per table for getting a correct (or near-correct) table, whether oriented by Req1/2 or Risk Mitigation (RM ½). Again

as stated above these should be the same. 2 points total

c) ½ point for each of the 4 RE values (2 from each tree). 2 points total

d) 1 point each tree for indicating whether the RM1/2 should be used or not. (Req 1/RM1 yes, Req2 / RM2 no)

2. Now add a new wrinkle, add a row (risk) to table 1 and a column to table 2 as such:

Risk Req1 Req2

1 Inadequate understanding of user needs 0.5 / 15

2 Poor understanding of needed technology 0.3 / 20

3 Decaying architecture 0.2 / 30 0.1 / 40

Table 3. P(UO) / L(UO) per risk and requirement with new row 3.

Now we have a risk that applies to both requirements. Here is how our mitigation plans help with this new risk:

Risk Mitigation – Risk Reduction/Cost Risk1 Risk2 Risk3

Lab 4 key provided to students as feedback

1 Prototype 0.4 / 5 0.1 / 3

2 Training courses 0.2 / 5 0.1 / 2

Table 4. Risk Mitigation actions with risk reduction and cost values, risk 3 added.

Now we have a situation where a single risk impacts more than one requirement, and each mitigation strategy impacts more than one

risk. Revisit your RE and decision trees for each of the mitigation plans to see if your answers change.

So there is actually a mistake in the 2nd part of this problem (there should not be 2 separate cost values in Table 4). Also the students

struggled very badly with it. You will see them try multi-level tables, or tables with lots of branches as they work through the

combinatorics. If they made a reasonable effort to solve it, give them the full 5 points. Only deduct points if the effort was not there.

Activity 2: (15 points)

Activity 2 expects you to use a risk matrix type approach to determine which Mitigation and Contingency plans

are worth applying to different Risk Categories in a hypothetical organization. It is expected you will use the

matrix on slide 9, and you may also choose to construct your own matrix so you may decorate it with counts

and costs of dealing with the Risk Events of each Risk Category.

Risk Category

/Event

Severity Probability Mitigation

Action

Contingency

Action

Outcome of Actions

PERSONNEL

Lack of knowledge

in this hw/sw

1 A 1, 2 Probability is reduced 3 levels

Insufficient

resources available

3 C 2 7 Probability reduced 1 level

EQUIPMENT

Delivery date slip 2 D 7, 8 Severity reduced to Negligible (4)

Insufficient

configuration

3 B 5, 6 3, 4 Probability reduced 2 levels, Severity reduced 1 level

LOGISTICS

Multiple customer

sites
4 A 9, 11 Probability is reduced 1 level

Physical separation

of team & customer

2 E 10, 11 Probability is now zero

Mitigation / Contingency Plan Actions (Preventative Measures and Contingency Measures columns). Relative

costs of each action are given as HIGH, MEDIUM, or LOW

1. Provide appropriate training. HIGH

2. Hire trained specialists. HIGH

3. Install temporary hardware. MEDIUM

4. Utilize internal hardware temporarily. LOW

5. Purchase additional equipment. HIGH

6. Implement product functionality in a phased manner.

 LOW

7. Adjust deadline and get customer buy-off.

 MEDIUM

8. Increase estimates for the related tasks HIGH

9. Hold regular meetings with customer. LOW

10. Visit remote sites as needed. MEDIUM

11. Demonstrate incremental results.

 MEDIUM

The Severity and Probability columns are coded to match the numbers and letters in the Risk Assessment

Matrix show on slide 9 of your notes.

The Risk Matrix on slide 9 is:

Answer the following 3 questions based on this table:

Q1: Using the leftmost 3 columns only, indicate which Risk Category (Personnel, Equipment, or Logistics)

presents the most serious problem for the organization and why? Use the risk matrix on slide 9 to help you

explain your answer.

Personnel = High+Medium, Equipment = Medium+Serious, Logistics = Medium+Medium, Personnel

4 points. 1 for identifying Personnel and 3 for the reason (comparing these values above)

Q2: Now add to the consideration of Q1 the rightmost column (Outcome of Actions) in the table. Do not

consider the Mitigation or Contingency columns yet. Applying the outcomes of the actions, reconsider your

answer to Q1. That is, presuming the application of the Mitigation and/or Contingency plans, the Severity

and/or Probability is impacted in different way. Consider how the risk matrix changes with these new values.

For Personnel it changes the 1st risk down 3 P levels (rows) and changes it to Serious. Risk 2 stays Medium

For Equipment it reduces Risk 1 to Low, and 2nd Risk to Low as well

For Logistics it has no impact on Risk 1, and eliminates Risk 2.

Personnel is still the biggest concern, even though all have been reduced to some extent

4 points – 1 for re-calculation of each category and 1 for identifying Personnel remains the biggest risk

category. You may award ½ points as needed as there are 2 risks per category.

Q3: Now factor in the actual Mitigation and Contingency plans. Specifically, the cost of implementing these

plans is given in the list with each action. Considering how often an action appears in the table, how much it

costs, and the Outcome of Actions (Q2), indicate a) which will be the most expensive category to apply actions

to, and b) whether it is worthwhile to apply the actions given the cost information.

11 Actions:

1. (Mitigation) Appears only once and with 2, but reduces probability a lot. Cost is HIGH

2. (Mitigation) Appears twice, both under Personnel, and cost is HIGH

3. (Contingency) Appears once alongside 3 other actions and costs MEDIUM

4. (Contingency) Appears once alongside 3 other actions and costs LOW

5. (Mitigation) Appears once alongside 3 other actions and costs HIGH

6. (Mitigation) Appears once alongside 3 other actions and costs LOW

7. (Contingency) Appears once alongside another contingency action and costs MEDIUM

8. (Contingency) Appears once alongside another contingency action and costs HIGH

9. (Mitigation) Appears once alongside another mitigation action and costs LOW

10. (Mitigation) Appears once alongside another mitigation action and costs MEDIUM

11. (Mitigation) Appears once alongside 2 other mitigation action on 2 separate risks and costs MEDIUM

Personnel has 3 actions: HIGH+HIGH+MEDIUM

Equipment has 6 actions: MEDIUM+LOW+HIGH+LOW+MEDIUM+HIGH

Logistics has 3 actions: LOW+MEDIUM+MEDIUM

a) Equipment is the most expensive category – 3 points, they should sum up as I did (they may not list out all 11 like my list, but

they do need to indicate somehow the volume of costs associated with the 6 actions. -2 if they do not state the reason. -1 if

they say Personnel instead of Equipment.

b) Which actions to apply requires an interpretation of the data, acknowledging there is some more data we would like (how

much are H,M,L costs? How much impact does an individual action have on the different risks?). The question is

intentionally obfuscating these details in order to get the students to reason about the tradeoffs. Look for answers that are

BASED ON THE DATA IN THE TABLE (2 points) and COMPARE ALTERNATIVES (2 points). 4 points total. Below is what

I would respond, but it really isn’t important to match my answer; again they have to state answers based on data and

comparing between alternatives!

a. For Personnel I would invest in action 2 as this is a big risk category. I would also invest in 7 as it is medium cost

and impacts Equipment as well. I would probably skip 1 due to the high cost, and is somewhat orthogonal to #2

b. For Equipment I would have already invested in 7, and in the absence of information that tells me otherwise, I

would invest in 4 and 6 as low cost options for the 2nd risk (since it starts at Serious). #3 and #5 cost more.

c. For Logistics I would invest in #11 as it appears in both and the cost is MEDIUM.

Activity 3: Individual Task (10 points)

Individually take the DISC personality test. You should then map the DISC type to one of the 3 personality

types under Motivation on slide 13 of your PM overview notes. Optionally (only if you are comfortable), I'd

like you to work with a partner (even out of class) and have them take the DISC test pretending that person is

you, and see what result that person gets for you. Finally, and again only if you are comfortable, I'd like you to

work with your capstone team to compose all DISC personality types and see if they are "compatible". Please

submit a summary of your personality results and of the optional discussions in a brief (min 300 words) well-

written summary that adheres to the general grading rubric.

3 points for evidence showing they took the DISC test and 2 points for mapping to one of the 3 personality types

in the notes (Task-oriented, Self-oriented, or Interaction-oriented). The part about working with a partner was

optional so I am not including it in the grading rubric. The other 5 points are for the writing rubrics which we

used on past labs. -1/2 point if < 250 words, -1 if < 175 words. -1/2 point for every TWO spelling, grammar,

and punctuation errors up to a max of 2 points off (8 errors). The remaining 2 points for writing style.

Activity 4: Individual Reflections (10 points)

1. Describe (400 words) how your Capstone (or 316 if you are not in Capstone) team has gone through the

“formin’, stormin’, normin’, and performin” stages of the Tuckman model that is popular in Agile team

practices (ignore “adjourning”). Provide a timeline and the events that exemplify each stage (and I know it

may not be the case that you have gone through all 4 stages yet). Please then share with at least one of your

Capstone team members and discuss similarities and differences in your summaries. Jointly write a 200

word comparison (in can go in each of your individual submissions, but identify the team member).

2. Provide a paragraph min (300 words) that describes how your Capstone team deals with risk, even if you do

not have a formal risk management process. First, is there any discussion of risk in the project management

deliverables you have been asked to produce? Second if yes, do you follow these procedures, and if so, are

they helpful? If you do not have them defined or you do not follow them, then describe how you informally

deal with risk – risk is a reality whether you have a formal plan or not, and it comes in many forms – late on

deadlines, team members not participating, lack of stability in your incremental sprint releases. How does

your team presently deal with these and other risks you can identify?

5 points for #1 the 400 word statement. -1/2 for < 350 words, -1 for < 250. Up to -2 for S, G, and P as specified

in Activity 3. 2 points for connecting to Tuckman’s model and including a timeline.

2 points for joint 200 word comparison. 1 point for length and SGP (½ for at least 150 words, ½ for < 4 SGP)

3 points for #2. ½ for <250 words, ½ for < 4 SGP. 2 points for answering the 2 questions asked for.

https://discpersonalitytesting.com/free-disc-test/
https://www.frontrowagile.com/blog/posts/120-forming-storming-norming-and-performing-in-a-scrum-team

The Software Enterprise in ASU’s BS in Software Engineering
Kevin Gary, Associate Professor

School of Computing, Informatics, and Decisions Systems Engineering, Arizona State University
kgary@asu.edu, (480)727-1373

The Software Enterprise is a multi-semester sequence designed to accelerate student learning of practical, “real world” considerations
in applied computer science. The Enterprise has several defining characteristics that separate it from other problem-based courses:

Continuous – The Enterprise is currently designed as a contiguous four-semester sequence. This sequence exposes students, in a
specified order, to all phases and roles of the software process lifecycle, and provides a continuity to the experience.
Scalable – Students work through two project lifecycles instead of one while in the Enterprise. The continuous, yearlong project
cycle allows for larger teams and larger projects, so students get exposed to a myriad of issues that occur when scaling up.
“Real-world” – Students are exposed to the full spectrum of forces affecting software development projects. Teams are asked to
cope not only with technical issues but also with social or soft-skill issues with real-world industry sponsors.
Collaborative – Students work in teams across academic year boundaries. Students role-play, with participants responsible for
different process-oriented roles. Teams deal with outside roles, such as customers and CXX-level management. Teams work with
other Enterprise teams. For example, 4th semester students of the Enterprise mentor and manage students in the 2nd semester.

The five semester sequence leads students through "Personal Software Process", “Tools and Process”, “Construction and Transition”,
“Inception and Elaboration”, and “Project and Process Management”. By the conclusion of the Enterprise sequence, students have an
appreciation for the role of software process, the challenges of software maintenance, the impact of open source, the pros and cons of
off-the-shelf software integration, business considerations in building software, and other practical aspects of software development.
Our vision for the Software Enterprise is to educate students on the following principles:
• Provide a situated educational experience for students that expose them to impacts of organizational, social, and cultural

influences on the success of software projects.
• Help students realize software decisions are business decisions; such decisions are not made based on technical attributes alone.
• Help students understand stakeholder expectations; Project Managers, Customers, End users, SMEs, Business Development, etc.
• Provide extended hands-on enterprises applying the techniques learned in traditional classroom settings so new graduates not only

comprehend the subject content but know how and when to apply it.
• Have student learning evolution follow the learning track of new professionals so as to
expedite the assimilation of our graduates as new hires in software organizations in the greater
Phoenix metro area and beyond.
The Software Enterprise employs a teaching and learning model (shown at right) combining
traditional lecture, group engagement, problem-centered learning, reflection, and hands-on
practice on scalable applications. In this model, students attend a reduced lecture schedule to
create awareness and understanding, put the lecture concepts into practice through group lab
sessions each week, integrate these skills into the scalable yearlong project, reflect on this rapid
learning experience, and engage in group discussion regarding lessons learned. It is our premise
that this model facilitates comprehension through to applied knowledge, making Enterprise
graduates better prepared for the workforce upon graduation.

The Enterprise is currently in its 12th year. With support from the National Science Foundation, Kaufmann Foundation, and ABOR,
and State Farm, the Enterprise has engaged in multi-university projects with a variety of industry sponsors on over 75 projects.
References:
1. Gary, K., “The Software Enterprise: Practicing Best Practices in Software Engineering Education”, International Engineering Education Special Issue on Trends in

Software Engineering Education, 2008.
2. Gary, K., “The Software Enterprise: Preparing Industry-ready Software Engineers”, chapter accepted to Software Engineering: Effective Teaching and Learning

Approaches and Practices, Ellis, H. (ed.).
3. Gary, K., Koehnemann, H., and Gannod, B., “The Software Enterprise: Facilitating the Industry Preparedness of Software Engineers”, Proceedings of the National

Conference of the American Society of Engineering Education, 2006 (ASEE ’06).
4. Gary, K., Gannod, G., Koehnemann, H., and Blake, M.B., “Educating Future Software Professionals on Outsourced Software Development", Proceedings of the

National Conference of the American Society of Engineering Education, 2005 (ASEE ’05).
5. Gary, K. Gannod, G., Koehnemann, H., Lindquist, T., and Whitehouse, R., “WIP: The Software Enterprise”, Frontiers in Education, 2005 (FIE ’05).

Support:
1. Gary, K. “The Software Enterprise: A Reinforcing Pedagogical Teaching Model”, National Science Foundation Course Curriculum and Laboratory Improvement

Phase I Grant (NSF CCLI I), January 2009-December 2001, $148,938.
2. Gary, K., Koehnemann, H., Sannier, A., Kagan, A., and Acharya, R., “Agile Methods for Entrepreneurship”, Enterprise@ASU Pathways to Entrepreneurship Grant

(PEG) Award ($39,731) through support from the Kaufmann Foundation, November 2007 (implementation 7/1/08-6/30/09). This award supports a variety of
activities, one of which is to introduce a cohort to the Software Enterprise, joining DCS students with B-school entrepreneurs.

3. Gary, K. and Gannod, B., “The Software Enterprise: Preparing Industry-ready Software Engineers” Arizona Board of Regents Award ($24,041), Learner-Centered
Education (LCE) program, April 2005. This grant supported initial work creating LCE labs and post-graduations surveys of the Enterprise.

4. Gary K., Ghazarian, A., and Mazzola, D. “The Software Enterprise”, State Farm Foundation Good Neighbor Grant, $40K ($18K share). 2015

Curbing Cyber Attacks Through Improved Cyber Security

Standards and Software Development Practices

Tresor Cyubahiro, Wesley Davis, Kevin Hale, James Ortner, Scott Watkins

Team: A Business of Ferrets

SER 416: Software Enterprise: Project & Procedures

April 12, 2019

Student Written Work - Sample 1

1

Introduction

Looking back in history, there have always been those who try to skirt or exploit the rules

and take advantage of the systems in place that govern and shape society. These people all have

different reasons for their actions whether they be for the greater good of the community or for

personal gain. Unfortunately, not all cultures have the same values or ethical alignment and so in

order to protect their property, they need to defend in the respective manner. To better illustrate

how one group of people defend their property, an examination of the progression of society can

help enlighten the gravity of what the world is dealing with today. Native American tribes that

would battle each other for territory would do so in hand-to-hand combat. Nations fighting

across oceans would use navies. As technology advanced, nations around the world began to use

aircraft as the next form of battle. Each time that a new offensive strategy was made, then

countermeasures were made to defend.

In today's society, the new offensive tactics take place not in a tangible manner, but a

digital one: the internet. The era of today is dubbed “The Information Age”, and as such, many

of the threats that we face are not from armies, navies, or fleets, but from those who wish to be

influencers and change opinions. Oftentimes, these digital attacks are directed at society and

society doesn’t even notice, especially because almost everyone carries with them a means to be

attacked digitally with them in their pockets and handbags. A side effect of living in the

Information Age is that society has incredible stores of information at their fingertips within

seconds.

While physical attacks used to take months of planning and months of execution, a digital

attack can be executed within seconds and affect millions. What can be done to mitigate the

2

damage of current and future attacks? One method of doing so is through improved software

development, with cybersecurity at the forefront of the design and implementation. Instead of

focusing on rapid development to satisfy the desire for the here and now, focus instead on

security standards that will mitigate future damage by evolving digital threats. By asking the

following questions, a better direction can be gained on how to better prepare for more cyber

attacks. What technical approaches are developers currently using to combat these cyber attacks?

What process approaches are managers and team leaders using for the development process?

What are the current and future impacts of cyberattacks on society? How do these standards and

impacts of current events impact the Software Development Lifecycle?

Technical Summary

Ian Sommerville, author of Software engineering, states that a cyber attack is “an

exploitation of a system’s vulnerability. Generally, this is from outside the system and is a

deliberate attempt to cause some damage.” (Sommerville 2011, 303). Sommerville also says that

“When you consider security issues, you have to consider both the application software (the

control system, the information system, etc.) and the infrastructure on which this system is built”

(Sommerville 2011, 367). This approach to mitigation of cyber attacks involves the developers,

but also the team leads and project managers. Each of these groups of workers have different

methods of verifying that the end product is secure, and each method comes with its own

positives and negatives.. The approaches of the developers are more technical in nature and are

related to the source code directly. These methods are focused on catching defects before they

appear in a production environment and include either manual or automatic reviewal of the code.

A few of these methods include verification and formal methods, model checking, and statistical

testing. On the other hand, the team leads and project managers focus their efforts on ensuring

3

that the process of development fosters security focused design decisions. These approaches

include software process improvement, risk management, defect management, and work

breakdown structures. The decisions and plans that this second group makes generally affect the

first and are highly dependent upon the estimates of work from the first group. In order to

mitigate the number of security issues, both teams must do their parts to ensure the whole

application stack is secure.

For the technical approaches, the first method to discuss is verification and formal

methods which are the systematic reviewal of all the source code, either manually or

automatically. One approach to this method is in-person, formal reviews of each individual line

that is written. The main benefit achieved from this is that through traceable requirements, each

line of code can be traced back to a specific requirement that addresses certain standards that it

must reach. For example, a software application deployed in hospitals must conform to the

privacy policies as stated by HIPPA. A formal code review can ensure that the proper measures

were taken to correctly implement such features and allow the team to trace the specific methods

and functions back to the requirements of the code. This approach is very effective to find and

remove defects as long as the team is diverse enough to be able to understand where and why

defects would appear. This method is also very expensive and time consuming, which is one of

the reasons that it is not used as often as it should be.

Another method that is more effective for embedded systems but can still be utilized for

general software products is model checking. Model checking is the process of creating a state

model of all the possibilities of a product and verifying that for a given situation, the state of the

model is as expected. This is useful for testing security issues as many different scenarios can be

tested quickly to ensure that all responses are nominal. Just as the last method was expensive,

4

this method has an exponentially increasing cost relative to the size of the model as the number

of states increase. This also increases the number of areas that could potentially inject security

flaws. Continual testing of this method are computationally expensive and generally not useful

for large software products.

The final and most effective method of ensuring product features are consistent, is

automated static analysis which can provide the benefits of in-person formal reviews and the

results can be viewed and verified much more efficiently. As the developers add features to the

product, they also brainstorm as many ways conceivable to bypass or break the feature and use

those test cases as a basis for how the feature should be designed. This method also allows

versioning of the product and ensures backwards compatibility. These tests are run every time a

new feature of the project is implemented to verify that all other parts still work as previously

intended. Automatic static analysis is the most cost effective of all the technical approaches to

security and could be viewed as the most effective for verifying backwards compatibility.

In terms of the software processes, many of these approaches can be integrated with

security in mind. Defect Management can be used to keep track of vulnerabilities, which

Pfleeger Charles P. defines in his book Security in Computing as “a defect, which enables an

attacker to bypass security measures”(Pfleeger 1997). Therefore, a lot of the same processes and

methods used to manage defects in a software project can be used to manage software security

vulnerabilities. However, where software vulnerabilities differ from normal defects is in the fact

that vulnerabilities have lots of data available by multiple sources for analysis. Agencies like the

National Institute of Standards and Technology (NIST) have a database of vulnerabilities that

constantly get updated, and lots of companies offer Common Vulnerabilities and Exposures

(CVE) databases for software developers to utilize. Tools are available to search software

5

projects for these vulnerabilities, and Github will even alert users if it detects projects using

libraries with vulnerabilities from open source databases mentioned above. This can make

finding vulnerabilities much easier than finding defects in some cases, because not only are the

software project team looking for these security defects, but millions of people around the world

are able to contribute to discovering these problems and make software more secure. These

vulnerability databases can also be used to help with the software process of defect estimation, as

many of the databases list the severity of these software defects. When a defect is detected,

estimating its size can be useful in determining how immediate a fix needs to be applied to the

software. The same can be used for vulnerabilities, as not all security inneficices are equal. For

instance, the vulnerability database NIST provides lists a base score of how critical the defect is,

a score of its impact, and a score of its exploitability, all on a scale from zero to ten. These

numbers helps software developers estimate how long it will take to fix the vulnerability, also

help them determine how critical the vulnerability is. So not only does security get introduced

into defect management and defect estimation, but often times will directly contribute to these

software processes.

Another software process that can be used, while keeping security in mind is the work

breakdown structure (WBS). The WBS is used to breakdown the different components that make

up deliverables within the software process. The way the WBS is structured will vary a little

depending on what is needed for the software process of the specific project. In terms of security

itself, the WBS can easily be used in order to give a high level overview of the security tasks that

need to be completed in order to limit the number of security defects that make it into the final

build of the software. However, to make full use of the WBS, it is important for the team to be

properly organized in order to use this process to its full potential. In the article “Work

6

Breakdown Structure (WBS) in Project Management”, by Vasile Zecheru and Bianca Georgiana

Olaru, they liken the project manager to an architect, as the project manager is often in charge of

creating the WBS (Zecheru and Olaru 2016, 63). Additionally, the project manager is the main

beneficiary of the WBS application technique . Aside from the project manager, the rest of the

team is responsible to complete the deliverables that are present on the WBS and it is assumed

that the team will have high performance overall. Additionally, the components that make up the

WBS should be structured in a way that prioritizes the most important tasks first. Security itself

is only a small part of this process, but the high level overview that it provides can lead to the

team knowing which tasks need to be completed for the software process as a whole.

In order to ensure a high level of security in a software, organizations may also utilize the

approach of process improvement and process maturity. This approach is employed in order to

gradually improve an organization’s software development process to a mature level by

introducing good and standardized software engineering practices into the organization’s

software development process. As Sommerville puts it, “The level of process maturity reflects

the extent to which good technical and management practice has been adopted in organizational

software development practice” (Sommerville 2011, 706). As a result of taking the approach of

software process improvement and maturity, organizations are able to produce good quality

software, which correlates, to some degree, to secure software.

The software process improvement and maturity approach incorporates practices such as

statistical quality control. As Sommerville describes statistical quality control, it is a practice

which is based on measuring the number of defects and deriving a correlation between the

defects and the process [Sommerville 2011, p. 707]. The objective of this practice is to “reduce

the number of product defects by analyzing and modifying the process so that the chances of

7

introducing defects are reduced and defect detection is improved” [Sommerville 2011, p. 706].

With this practice, the organization can incrementally review every improvement cycle, and

whenever a lower defect count is reached in an-ongoing cycle, the current process is then

standardized and re-employed in the subsequent cycles while adding changes and enhancements

that improve the software development process and software project management.

Case Study: A Software Security Marketplace Case Study (September 2011)

 In September 2010, HP acquired the source code analysis tool vendor known as Fortify.

This transfer process, however, ended up taking over a decade to complete. In the end, this

technology ended up in the hands of a provider with a global reach after starting as just a project

funded on a federal research grant (McGraw 2011, 9). The transfer that happened here is

exceedingly rare because while it took over a decade to complete, the sheer difficulty of the

transfer also required millions upon millions of dollars of investment to research and develop

what was needed to complete this transfer.

 Traditionally computer security was focused on networks; little focus was given to

securing computers outside of this realm. This of course was an attempt to create barriers such as

a firewall, to keep attacks created by malicious hackers from hitting machines that were

vulnerable. Firewalls today are just about everywhere, but firewalls alone are not enough as

serious security issues continue to persist despite their widespread implementation.

 Starting in the late 90’s, the needs for computer security had evolved, birthing what is

known as software security. The idea was to engineer software that is able to continue

functioning properly even when it’s under a malicious attack (McGraw 2011, 9). Efforts working

towards integrating better security practices into their software development life cycles was

spearheaded by Microsoft. The company Cigital, which was also responsible for early versions

8

of the technology base used by Fortify, was also highly important in bringing software security

through its professional services to a wider market (McGraw 2011, 9). The combination of the

efforts from both of these companies, as well as other companies working towards similar goals

lead to the creation of the Security Development Lifecycle (referred to as SDL from here on).

 This led to the creation of the Building Security in Maturity Model (BSIMM), which

describes the activities used by enterprise-level software security initiatives and is used as a

gauge to measure these initiatives (McGraw 2011, 9). From this model came three commonly

used methodologies: Microsoft’s SDL, Cigital’s Touchpoints, and the Comprehensive, Light-

weight Application Security Process (CLASP), These methodologies were created by the Open

Web Application Security Project (OWASP) (McGraw 2011, 10). All of these methodologies

aim to inject quality security practices into the life cycle of software projects. This includes a

range of different tests and reviews during a project’s life cycle, but the most commonly used

practices are architectural risk analysis and code reviews.The main reason this is true is because

every software project has to have code, which also means it can be reviewed. Additionally, it is

now possible to easily automate some of this process using static analysis tools, which were

invented and developed by companies such as Cigital.

 Citigal was founded in 1992, under the name Reliable Software Technologies, and at the

time was funded through federal grants from various agencies. Starting in the late 90s Citigal

turned its focus on working on security for Java. This included many software-centric

approaches towards discovering issues such as scanning code for potential security risks and

fault injection. Eventually Citigal developed their tool ITS4, which was the world’s first code

scanner for both C and C++ (McGraw 2011, 10). Overtime the patterns that Citigal was able to

automatically parse for issues became more sophisticated and could be used for more use cases.

9

Eventually a new code scanner called Mjolner was created. This scanner far surpassed ITS4, but

was not initially ready for use outside of the testing done by scientists working on it.

 In the early 2000s, Mjolner was renamed to SourceScope, and was seen as a research

prototype that was dependent on many open source tools to even work (McGraw 2011, 11). Due

to the state that the program was in, Cigital only used it for consulting engagements for code

review (McGraw 2011, 11). So while SourceScope had the ability to discover more interesting

vulnerabilities than its predecessor ITS4, it was also incredibly painful to try and use, and

required the user to have knowledge of navigating a program’s source code during code reviews.

 Later in 2003, Citigal ended up licensing their SourceScope technology to a startup

partner associated with Kleiner Perkins Caulfield & Byers firm. This startup is what would

eventually become Fortify, and at the time only had a small team of four members. This team

then tore SourceScope apart and rewrote it from the ground up. This eventually paid off and they

were able to create a commercial-grade product from the previously barely functional product

(McGraw 2011, 11). After seven years Fortify had managed to get several release cycles out to

several hundred customers in the real world.

After all this time, the tools were finally production ready and Fortify started to get

noticed by large technology corporations. Their initial tools were for black-box web application

testing tools, but they followed up with tools for white-box testing next (McGraw 2011, 11).

These many years of hard work eventually lead to the company becoming integrated into HP and

work on creating better tools and improving old ones still continues today.

Standards in Security

 Standards define how products such as software should be implemented for the safety of

the consumer and to ensure product reliability. Standards also help in assessing the quality of a

10

product and establish the basic requirements a product must meet prior to the planning or

development of the product. Basically, standards have helped set guidelines for the creation of

many products ranging from computers to cellphones resulting in reliable products such as the

Windows PC and Apple iPhone. In this section, we will discuss the brief origins of security

standards in software engineering, the Trusted Computer Systems Evaluation Criteria (TCSEC)

or “The Orange Book”, and ISO 15408 also known as Common Criteria; as they pertain the

importance of creating a reliable and secure software product.

A Brief History

 The origins of security standards begin with the United States Department of Defense

(US DoD) and the need to protect computers that emanated electromagnetic frequencies. The

TEMPEST standard, considered to be the first computer science security standard, was created

by the DoD in the late 1950s to determine the acceptable level of emanation used to transmit

classified information. This standard was created to ensure that any information that was deemed

classified was transmitted in a secure way from sender to receiver without the potential threat of

an “electronic eavesdropper”. This standard would then later produce the Industrial TEMPEST

Program (ITP), a program that was established around the notion of three goals; to set

commercial standards; designate criteria for testing equipment that met the set standards; and to

certify vendors equipment (Yost 2007, 599 - 600). The only issue with the TEMPEST standard,

was that it was focused and geared toward devices that used electrical emanation, making this

standard unacceptable or not needed for devices that would later work on networks.

 It was not until the 1970s that another security standard was established, which would

address the multiple facets of computer technologies such as computer networking and time-

sharing. The Department of Defense Trusted Computer System Evaluation Criteria or TCSEC

11

for short, was the culminated efforts of the National Computer Security Center (NCSC) and the

MITRE Corporation to standardize government procurement requirements. The TCSEC also

provided structure in which manufacturers would use to evaluate and measure the overall

security of their systems (Yost 2007, 606). TCSEC was the standard that was most commonly

used within the US and sparked European countries to begin research and development of their

own variation of the TCSEC called the Information Technology Security Evaluation Criteria or

ITSEC (Yost 2007 609).

At this point, the TCSEC standard had not yet reached the domain of local area network

(LAN) and wide area network (WAN) systems. It was not until 1987, where the NCSC had

published the Red Book, which included interpretations of the TCSEC with security features,

assurance requirements, and ratings structures of computers that resided on a LAN or WAN or

even internetwork systems (Yost 2007, 609). The standards created in the improved TCSEC Red

Book were not the end all be all solution to the continuous change of the security standards in

computing technologies. With the consideration of improvements from the Redbook Series and

research from a variety of countries, including the International Standards Organization (ISO),

the Common Criteria standards were completed in 1996. They would later be changed to ISO

15408 after the Common Criteria version 2.0 was passed and established in 1998 (Yost 2007,

610).

TCSEC: The Orange Book

 As mentioned earlier, TCSEC was one of the original standards created by the DoD to try

and provide a generalized structure in which organizations could ensure their products were

secure. TCSEC’s overall premise was that it was possible to evaluate a system and place that

system into a category that would be understood to hold a certain degree of trust with

12

communities that required the differentiation of classified and unclassified data. These different

categories could be broken down into four different levels of security protection (where from left

to right is strongest to weakest): A – Verified Protection, B – Mandatory Protection, C –

Discretionary Protection, and D – Minimal Security Protection. Each category would then also

have numbered sub-categories where the higher the sub-category reference, the more secure the

product was evaluated to be (Yost 2007, 607). For example, for a product to be classified as an

A2 in the TCSEC security standard, evaluators would have to perform formal verification on the

product all the way down to the source code level (Lipner 2015, 24).

 The evaluation process for TCSEC proved to be more rigorous and time consuming that

what was originally thought. For companies that were ensuring their product would at least reach

a C2 or B1 level of standard acceptance they had to ensure that the documentation for their

product included the design documentation for evaluators to understand how the system

functioned (Lipner 2015, 27). Since design documentation could potentially lead to exposure of

sensitive materials such as proprietary system components, vendors created design

documentation that would be used to satisfy TCSEC evaluators needs, instead of guiding

developers to learn and understand how their implementations worked. This also lead evaluators

to create their own interpretation of the TCSEC standards to match their understanding of how

the product they were evaluating should work (Lipner 2015, 27). Overall, the TCSEC was an

initial attempt to create generalized standards that should be used to evaluate security products;

however, due to misinterpretations and lack of proper product standing, TCSEC fell short in its

effort to provide a surplus of quality security system.

13

ISO 15408: Common Criteria

 The global community in computing information security developed the Common

Criteria standards in the mid-1990s with the help of ISO. More commonly, Common Criteria

was changed and referred to after its second version release as ISO 15408 in 1998 (Yost 2007,

610). ISO 15408 establishes the basic concepts of information technology security and specifies

the models of evaluation for products that wish to become evaluated under this standard (ISO

2009). This standard supersedes the TCSEC standard, although there are some similarities

between the two, especially in how ISO 15408 breaks down its evaluation into several evaluation

tiers.

 The criteria in which a company would evaluate their product under the ISO 15408

standard can be broken down into seven different security criteria levels called Evaluation

Assurance Levels. Each level is labeled as EAL 1 – EAL7, where the higher the value, the more

rigorous testing has to be to validate that the product is secure (Yost 2007, 610). For example, if

a company was wanting to ensure their products meet EAL 4, they would have to make sure their

product was methodically designed, tested and reviewed to ensure that the product could

withstand penetration attacks (ISO 2009). ISO 152408 is still in use today, and in fact recently

had a revision by ISO in 2014, more information on this standard can be found on the

organization’s website.

 The need and usage of standards in the domain of security is extremely important to the

trust and protection of proprietary information worldwide. As seen in history, security standards

did not stay stagnant, nor did they simply cover one aspect of a technology stack. As different

technologies came about the need to create standards to prevent potential risks evolved and grew

overtime. As we continue moving forward in computer technologies, the need to create and

14

further develop our current standards with also continue, all to ensure a quality and trustworthy

product.

Case Study: Facebook Security Breach (September 2018)

In September 2018, Facebook’s engineering team announced that they had discovered a

security breach on their systems. This was a massive security breach which had affected

approximately 50 million accounts, according to the official report from the company (Rosen

2018, par. 1). The report mentions that this security breach came about due to a then-newly

implemented feature “View As” which allowed users to see what their own profile looks to

somebody else checking their profile. This feature however introduced a number of

vulnerabilities and bugs to the Facebook application systems. Consequently, attackers were able

to take advantage of these bugs and vulnerabilities and stole Facebook access tokens from

millions of accounts, which they used to log into the systems as the users whose access tokens

had been stolen.

This security breach is relevant to the discussion of software and cyber security because it

originated from software defects. According to the report generated by the company, the security

breaches came about as a result of three particular defects which were introduced during the

implementation of the “View As” feature (Rosen 2018, par. 10). Firstly, the intended

functionality of this feature was to make it a “view-only interface” (Rosen 2018, par. 11). This

meant that the users would only be able to view the View As page as it was rendered and in no-

way should have been able to interact with any of the user interface components on this

particular view. However, as the report mentions, one of the user interface components which

normally allows users to upload videos “incorrectly provided the opportunity to post a video.”

15

(Rosen 2018, par. 11). Additionally, this video uploader would incorrectly generate an access

token that granted the current user the permissions of the Facebook mobile application. Lastly,

the access token generated by the video uploader was not for the current user, but rather for the

user whom the current user was looking up (Rosen 2018, par. 13). The report adds that the

combination of these three bugs made it possible for attackers to gain access to many Facebook

users’ accounts and log in into the system as the people whose access tokens had been stolen

(Rosen 2018, par. 14).

Companies which collect and handle such sensitive user data should have an even

stronger and more thorough SDLC processes in order to ensure such cases do not happen. Also,

in cases where the security breaches do actually happen, such organizations should put in place

efficient risk mitigation strategies in order to minimize the amount of damages such security

breaches can bring about. Looking at this issue from the outside, one can argue that these bugs

could have been found before release by implementing commonly used processes in software

development such as code tests and code reviews. However, it is common that bugs end up in

release versions and only surface during the operations and maintenance phase of the SDLC.

Plus, new developments and enhancements to software systems introduce changes which when

integrated with current features can introduce un-anticipated security vulnerabilities, as was the

case for this case study. Therefore, it is important that organizations follow and emphasize

activities such as conducting continuous monitoring during the operations and maintenance

SDLC phase [Kissel 2018, p. 34] and assessing system security during the implementation and

assessment SDLC phase [Kissel 2018, p. 30].

16

As is a standard practice for companies developing security-vulnerable software systems,

such companies’ SDLC must include activities and plans which ensure that some of the

preventable issues and risks are dealt with or planned for in advance and that preventive

measures are built-in in the software systems as they are being developed. Some of the activities

implemented in SDLC that Facebook implemented include continuous monitoring. The report

from the company mentions that this security breach was discovered by the engineering team.

The team was then able to analyze the breach and trace it back to its origin in the newly

implemented feature “View As”. In addition, Facebook had in place a number of risk mitigation

strategies and plans to deal with such security breach. Firstly, the company reported that it fixed

the bugs and vulnerabilities, and temporarily disabled the “View As” feature in order to conduct

a thorough security review of this feature. Secondly, the company reported that in addition to

informing users and law enforcement of this security breach, it also “reset the access tokens of

the almost 50 million accounts we know were affected and also took the precautionary step of

resetting access tokens for another 40 million accounts that have been subject to a View As look-

up” (Rosen 2018, par. 16).

All in all, Facebook's security breach of September 2018 is a relevant case to software

security because it is an example which illustrates the inter-connection between software security

and SDLC, its processes and activities. It also illustrates and puts in perspective the effect of

setting and implementing risk mitigation plans in cases where security breaches do actually

occur despite the activities which may be performed during SDLC to ensure that the probability

of such breaches occurring is reduced.

17

Current and Future Impact Discussion

The discussion of software security has seriously impacted software development, not

only in how software is designed currently but also in how systems and designs will be

engineered in the future. The National Institute of Standards and Technology (NIST), one of the

leading agencies of software standards and security, states that “executing a risk management-

based approach for systems and projects means integrating security early and throughout the

agency’s established system” (Kissel 2008, 4), and that implementing such a policy “plays a

significant role in measuring and enforcing security requirements throughout the phases of the

life cycle.” (Kissel 2008, 4). This means that a project that desires to implement security into

their software need to do so at the earliest stage of their development, and continue to keep

security at the forefront of their development throughout the entire software development life

cycle. This impacts how software is architected, designed, and developed.

Instead of the topic of security being just another feature to add as an afterthought,

security needs to be at the core of a software project and inside every part of the software

development life cycle. This change in mindset also affects legacy systems. NIST outlines its

security considerations for new projects, but also states that those considerations “are still

relevant to … legacy systems, and should be applied and documented to ensure security controls

are in place and functioning effectively to provide adequate protections for the information and

the information system” (Kissel 2008, 8). Depending on their state, these legacy systems and

their maintenance could be seriously impacted by the need to keep these adequate protections.

Software security also affects how the future of software development will progress. As

software is trending more and more towards cloud deployment and virtualization, the discussion

on software security is changing how these new technologies are being designed, tested,

18

marketed, and are overall driving the future of software as a whole. The advancing technology of

virtualization, or the ability to run multiple virtual computers with their own independent OS on

one physical computer, brings with it new security questions and topics.

The technology of virtualization brings many benefits, but NIST points out that it also

“requires additional security planning for unique security risks inherent in virtualization…such

as data interception…, keystroke logging …, denial of service to the host’s resources”, and the

exacerbation of security issues not unique to virtualization “such as malware, data leaks, patch

management, and weak access controls.” (Kissel 2008, 44) These unique problems caused by

virtualization has led to large companies like Amazon and Google developing cloud solutions

with security tools to help manage these security risks. For example, Amazon Web Services’

home page at https://aws.amazon.com/ lists seventeen different services and tools they provide

specifically for security, identity, and compliance. All of this taken together, it starts to become

apparent how far reaching and impactful software security is on the past, present, and future of

software development. From legacy systems needing maintenance or rehauling, to modern

projects needing to design with security in mind from the beginning, to the future of software

systems having more and vastly different types of security concerns that will shape how

development will proceed, software security affects every aspect of software development.

Impact on the SDLC

 During all stages of the software development life cycle, you can find reasons to look at

security. However, two of the stages most affected by security are Requirements and Testing.

During the Requirements stage, the core features and use cases of the software are determined.

When security is a concern, the requirements phase is the best time to begin anticipating security

problems and architecting solutions. NIST asserts that “early planning and awareness will result

19

in cost and time saving through proper risk management planning. Security discussions should

be performed as part of (not separately from) the development project to ensure solid

understandings among project personnel of business decisions and their risk implications to the

overall development project” (Kissel 2008, 13). When security discussions happen as part of the

Requirements phase, the implementation is not only smoother during the other stages of the

software development lifecycle, but can also make the rest of the requirements and design of

project better.

This has a large impact on how the entirety of the project is designed, and requires

everyone associated with the project to come to a mutual understanding of the security issues and

their corresponding proposed solutions. In their paper, Software Security Rules: SDLC

Perspective, C. Banerjee and S. K. Pandey recommend that “all the personnel from requirement

engineers to maintenance engineers and other stakeholders should make themselves aware about

the latest software security issues, especially the critical ones. For SDLC team, this awareness

should be more technical, and, for other stakeholders, the awareness should be more general, but

necessary.” (Banerjee 2009, 127) This first, and important stage in the software design lifecycle

is greatly affected when security is taken into consideration; not only from a length perspective,

but from a people perspective. It requires everyone involved in the project to be aware of

security in order for the rest of the software process to be most successful.

Another software lifecycle stage greatly affected by security is Testing. Banerjee and

Pandey explains that “security rules will broaden the role of test engineers and they will be able

to choose the appropriate tools and techniques for testing the software from a security point of

view, with focus on destructive testing.” These tools and techniques for destructive testing will

be vastly different from the usual validation testing model, such as unit tests and functional tests.

20

NIST also explains that by adding security, activities to “plan and conduct system certification

activities in synchronization with testing of security controls” becomes necessary, as well as

“complete system accreditation activities” (Kissel 2008, 28). All of these validation activities

take time, and often time accreditation is a very involved process as well.

These new activities taken together with the normal activities that happen at Testing

make the stage quite a bit longer than before, and puts a greater importance on making sure

everything is validated correctly. While there are certainly other stages in the SDLC impacted in

similar fashions, Requirements and Testing are the ones that will always end up having a large

change compared to a project that doesn’t focus on security. As the world of technology

advances further and an increasing amount of sensitive data is being exposed to the internet, it is

more important than ever to insure that the software handling this sensitive data is designed and

architected in such a way to keep it secure, and is validated to work as expected. These things

would not be possible without a large impact on the Requirements and Testing phases in the

SDLC.

Conclusion

Cybersecurity is the new defensive frontier and software developers are the soldiers on

the front lines. As society continues to advance in this information age, the number of attacks

will continue to grow and so should the efforts of the developers to ensure that private

information stays private. This can be accomplished as a team effort between the developers and

project managers to verify that the code is secure. An examination of the different risks and

strategies to mitigate those risks needs to be developed and analyzed to make sure that the

product being built is actually what is needed and that extraneous, potentially insecure features

are not added. There have been many attempts to create tools to help in this effort but it has only

21

been in recent years that the focus has shifted to a security first development approach. However,

even though these tools are becoming better, as seen in the Facebook case study, defects can still

make their way into the final products. This can be seen as a major impact on the software

development lifecycle as it increases time and money spent to validate the software and tools for

each application. Also, if a bug does make it into the final code, finding and fixing the issues that

arise can be mitigated with proper procedures and policies in place to protect the further security

breach.

Cyber attacks are changing the way that society uses the internet and the way that

software is being developed. As more companies adhere to security standards, then the public

can trust software that they use for personal matters as it has been rigorously tested and vested.

The most impacted technology today being affected by security first development is cloud

computing. Cloud computing is being used by all forms of businesses and should be the first line

of defense. In order to combat the unseen enemies, development should be hyper-focused on

what will protect us. Just as the world adapted to different types of attacks, so should society

today adapt and create ironclad defenses for digital content to protect the unseen boundaries all

around.

22

Bibliography

Banerjee, C., and S. K. Pandey. “Software Security Rules, SDLC Perspective.”

International Journal of Computer Science and Information Security 6, no. 1 (n.d.): 123–

28. https://arxiv.org/abs/0911.0494.

“ISO/IEC 15408-1:2009.” ISO. International Organization for Standardization, January 1,

2014. https://www.iso.org/standard/50341.html.

“ISO/IEC 15408-3:2008.” ISO. International Organization for Standardization, May 1,

2011. https://www.iso.org/standard/46413.html.

Kissel, Richard, Kevin Stine, Mathew Scholl, Hart Rossman, Jim Fahlsing, and Jessica

Gulick. Security Considerations in the System Development Life Cycle , Security

Considerations in the System Development Life Cycle § (2018).

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf.

Lipner, Steven B. “The Birth and Death of the Orange Book.” IEEE Annals of the History

of Computing 37, no. 2 (2015): 19–31. https://doi.org/10.1109/mahc.2015.27.

Mcgraw, G. “Software Security.” IEEE Security & Privacy Magazine 2, no. 2 (2004):

80–83. https://doi.org/10.1109/msecp.2004.1281254.

Mcgraw, Gary. “Technology Transfer: A Software Security Marketplace Case Study.”

IEEE Software 28, no. 5 (2011): 9–11. https://doi.org/10.1109/ms.2011.110.

Pfleeger, Charles P. “Security in Computing.” Essay. In Security in Computing. Upper

Saddle River (New Jersey): Prentice Hall, 2000.

23

Rittinghouse, John W., and William M. Hancock. “Cybersecurity Operations Handbook.”

Essay. In Cybersecurity Operations Handbook, 4–44. Amsterdam: Elsevier/Digital Press,

2003.

Rosen, Guy. “Security Update.” Facebook Newsroom, September 28, 2018.

https://newsroom.fb.com/news/2018/09/security-update/.

Sommerville, Ian. “Dependability and Security.” Essay. In Software Engineering, 289–

302. Boston, MA: Pearson, 2011.

———. “Dependability Engineering.” Essay. In Software Engineering, 341–55. Boston,

MA: Pearson, 2011.

———. “Security Engineering.” Essay. In Software Engineering, 366–86. Boston, MA:

Pearson, 2011.

———. “Process Improvement.” Essay. In Software Engineering, 706–07. Boston, MA:

Pearson, 2011.

Yost, Jeffrey R. “A History Of Computer Security Standards.” Essay. In The History of

Information Security a Comprehensive Handbook, 599–610. Amsterdam: Elsevier, 2007.

Zecheru, Vasile, and Bianca Georgiana Olaru. “Work Breakdown Structure (WBS) in

Project Management.” Revista De Management Comparat International 17, no. 1 (March

2016): 61–69. https://search.proquest.com/docview/1814287304.

Scaled Agility in Software Development

Maurice Ajluni, Vatricia Edgar,

Joshua Goralczyk, Natallia Karaliova, Jeremy Powell

Project Management 416

Professor Baron

April 13, 2018

Student Written Work - Sample 2

2

TABLE OF CONTENTS

INTRODUCTION 3

Brief History of Development Methodologies 3

Agile Frameworks 3

Scaling Agile 4

TECHNICAL SUMMARY 5

Technical Summary: DAD 5

Technical Summary: SAFe 6

Technical Summary: LeSS 8

RELEVANT STANDARDS 11

ISO/IEC/IEEE Standards 11

Standards of DAD 13

IMPACT ON Software Development Life Cycle 15

SDLC: DAD 15

SDLC: SAFe 16

SDLC: LeSS 17

CASE STUDIES 18

Case Study: DAD 18

Case Study: SAFe 19

CURRENT & FUTURE IMPACT 21

CONCLUSION 22

BIBLIOGRAPHY 24

3

INTRODUCTION

Brief History of Development Methodologies

Software engineering is more than just “programming.” The development of high quality

software products requires planning, design, and testing to ensure that requirements are met and

customers are happy. The earliest framework for software development was “waterfall,” a

method which simply lays out the stages of development in a practical order: requirements,

design, implementation, verification, and maintenance. It was first formally described in 1956 by

Herbert D. Benington (Henseler 2018). Software development frameworks continued to evolve,

with the Spiral method introducing iterative methodologies in 1986 and the methodology of

“Scrum” being first mentioned that same year (Henseler 2018). The paper Scrum methodology

was published in 1995 by Ken Schwaber and Jeff Sutherland, and in 2001, the Manifesto for

Agile Software Development was published by the Agile Alliance (Henseler 2018). The

Manifesto for Agile Software Development declared agile to be radically different from the

earliest framework, waterfall, with one simple sentence: “Responding to change over following a

plan” (Beck, et al. 2001). Every framework which falls under the agile umbrella shares the

common goal to reduce the overhead of process and documentation, to increase collaboration

and interaction, and to always welcome change.

Agile Frameworks

 Agile processes arose as to address the software industry’s need for constant change.

Unlike other types of products, software is relatively easy to change, even after development has

begun, due to software itself having no physical parts. Different agile frameworks, such as

Kanban and Scrum, implement the agile principles to handle such changes. Kanban offers

continuous development, embraces change at any time, and promotes the idea of not having roles

4

to govern the team. This process is generally used in small development groups (Rehkopf 2019).

Scrum adds an extra layer of complexity with fixed length development intervals, called sprints,

during which developers work on user centric features called user stories from the sprint’s

backlog. A burndown chart tracks the team’s progress towards the sprint goal and is used to

determine the team’s velocity, or the amount of work the team can do in a sprint. Scrum also has

a set of roles, such as Scrum Master, Project Manager, the development team, and uses several

types of meetings, daily stand-ups, end of sprint reviews and retrospectives and beginning of

sprint planning, to maintain order and address issues. The suggested size of a Scrum team is

between four to eight people. For large projects who want to take advantage of agile, the small

scale frameworks that began the agile movement are not sufficient.

Scaling Agile

 Most agile frameworks were initially developed for use by a single, small team. While

useful for small businesses and small projects within large businesses, existing agile frameworks

did not address the issues large projects face such as managing more developers and merging

workflows. This lead to the development of new agile frameworks, intended to be used at a large

scale. Some of the most popular of these “scaled agile frameworks” include Large Scale Scrum

(LeSS), the Scaled Agile Framework (SAFe) and Disciplined Agile Delivery (DAD). Each

framework is grounded in agile principles, but they take different approaches in achieving their

goal of helping large projects and businesses reap the benefits of lean, agile development. As

with any framework, none of these may be declared “the best.” Which framework should be used

depends on the needs of the project and the company as a whole. In this paper, we will explore

the process of each of these large scale agile frameworks, their benefits and drawbacks, and the

future of scaled agile.

5

TECHNICAL SUMMARY

Technical Summary: DAD

 Originally designed by IBM, the purpose of Disciplined Agile Delivery is to take

methods from multiple other proven development techniques and use them to fill in the gaps left

behind by other agile methods (Ambler 2013, 3). DAD helps development teams find the most

efficient practices, and to describe these methods for future use. On top of delivering a shippable

product, DAD also focuses on creating supporting documentation. The idea is to create

“potentially shippable solutions,” not just “potentially shippable software” (Ambler 2013, 3).

Customers desire more than just a piece of software, they expect a solution to their problem that

is understandable and easy to use. While a stakeholder is a common concept in many agile

methods, DAD thinks in terms of stakeholders, not just users; it is important to consider not only

what the end user needs, but the business expectations and needs of the stakeholders as well.

This is because it is usually not possible to discuss directly with an end user what they desire in

the software. However, the group ordering the software is available for discussion and feedback

as the process continues (Ambler 2013, 3).

Disciplined Agile Delivery takes the successful aspects of multiple other agile methods,

such as Scrum, Extreme Programming, Lean, and many others, and merges them in a manner

that creates a goal driven environment for agile development. According to Ramakrishnan, one

of the greatest advantages of agile processes is the array of practices available (Ramakrishnan,

Gopinath, and Ambler 2019, 1). However, this may also be one of its greatest disadvantages; it

becomes very challenging to decide which practices are the best for an entire team and to

organize them together. Disciplined Agile guides these decisions and shows how the different

methods may work together to create effective production.

6

Technical Summary: SAFe

Developed by Dean Leffingwell in 2011, The Scaled Agile Framework (SAFe) focuses

on leveraging the benefits of the classic agile methodology on enterprise level by

accommodating enterprise level teams that range in size from 50 to 125 individuals. The Scaled

Agile Framework integrates individual activities into four organizational levels: Team,

Program, Value Stream, and Portfolio (Alqudah et al. 2016, 5). SAFe Agile Teams typically

combine Agile methods (Scrum and Kanban) over short iterations with smaller user stories,

demo the working system at the end of each iteration, and conduct retrospectives on potential

improvements and work-in-process. Under the doctrine of the Scaled Agile Framework,

collections of agile teams are referred to as Agile Release Trains (ART). The release trains are

assembled from individuals skillful in competencies needed to define, build, test, and deploy a

working solution. Each ART establishes a Continuous Delivery Pipeline comprised of

Continuous Exploration, Continuous Integration, Continuous Deployment, and Release on

Demand. Each component of the pipeline provides a feedback loop from customers back to the

development team helping the ART to redefine the vision, roadmap, and set of features for a

solution. The Scaled Agile Framework defines the Value Stream as “long-lived series of system

definition, development and deployment process steps which is utilised to develop and deploy

systems that supply a constant flow of value to the business, customer or end user” (SAFe White

Paper 2018). While SAFe identifies two types of value streams (operational value streams and

development value streams), its primary focus is on the development value stream which is

defined as “the people and steps used to develop new products, systems, solutions, and services

sold by the enterprise, or that support internal operational value streams.” Development Value

Streams (and the ART Agile Teams) aim to achieve the strategic goals of the Portfolio. SAFe’s

7

White paper emphasizes that SAFe Portfolio management strategy forfeits traditional fixed

annual planning and budgeting in favor of strategy and investment funding designed to put the

people who are doing the actual work (portfolio stakeholders) in charge of funding value

streams. At Program level, SAFe introduces additional teams needed to coordinate the

alignment of multiple ARTs: a Business Owner team of three to five stakeholders with “the

ultimate fiduciary, governance, efficacy and ROI responsibility for the value delivered by a

specific release train”; a Release Management Team (RMT) overseeing releases; a DevOps team

providing “tighter integration of development and operations as well as maintaining deployment

readiness for the program”, a System Team whose responsibilities constitute providing assistance

in building and using the development environment infrastructure (CI/CD, build and test

environments, Test Automation Frameworks) (SAFe White Paper 2018).

Since its original release in 2011, SAFe has undergone five major updates fostering the

evolution and expansion of the framework in response to volatile market conditions driven by

changing customer needs, and emerging technologies. The latest version of The Scaled Agile

Framework, SAFe 4.6, was released on October 3, 2018 and introduced the Five Core

Competencies of the Lean Enterprise: Lean-Agile Leadership, Team and Technical Agility,

DevOps and Release on Demand, Business Solutions and Lean Systems Engineering, and Lean

Portfolio Management (SAFe White Paper 2018). Scaled Agile, Inc (the central hub for SAFe

framework started by Dean Leffingwell, the creator of SAFe and Chief Methodologist at Scaled

Agile, Inc) provides enterprise level training and certification for SAFe with 70% of Fortune 100

companies and over 300,000 practitioners trained to date. As demonstrated by numerous case

studies conducted by Scaled Agile, Inc in partnership with small and large enterprises (including

Air France, Capital One, Intel, Swisscom, Cisco, HP, Discount Tire, Valpak, John Deere, etc)

8

implementation of SAFe methodology has contributed a 20 to 50% increase in productivity, a 25

to 75% improvements in quality, a 30 to 75% faster time-to-market, and a 10 to 50% increase in

employee engagement and job satisfaction (Leffingwell 2018).

Technical Summary: LeSS

The scaled agile framework Large-Scale Scrum was developed by Bas Vodde and Craig

Larman to accommodate for large companies that have a large number of development teams,

and multisite product development. LeSS follows the belief that less management, roles, and

overall organizational structure removes unnecessary complexity, allowing the product owner to

work directly and equally with individuals (Kalenda 2018, 4). Vodde and Larman explain that

when scaling Scrum, their approach is to adopt standard one-team Scrum and build on it (Vodde,

Bas, and Craig Larman 2013, 1). This is because LeSS examines the elements of a one-team

Scrum and endeavors to reach the same goal within the constraints of standard Scrum rules.

Vodde and Larman elaborate that the dissolution of single-function, specialized subgroups, such

as a testing group or architecture group, is also a necessary step to scale Scrum (Vodde, Bas, and

Craig Larman 2013, 1).

With LeSS, traditional job titles and management roles are dissolved; this leaves the

focus on the individual and the product owner. Additionally, LeSS eliminates the traditional

team lead or project manager roles, and embraces that there is “no organization wide standard

process that everyone must follow” (Vodde, Bas, and Craig Larman 2013, 2). Instead, the team

is treated as one team, with no specialized roles, and has a dedicated Scrum master following

under the Product Owner. Despite having multiple teams, LeSS still follows a One-Team Scrum.

Therefore, there is only “one product backlog, one definition of done, one potentially shippable

product increment, one (overall) product owner, one sprint, and no specialists on any team”

9

(Vodde, Bas, and Craig Larman 2013, 2). Essentially, all of the teams work in a 2-4 week sprint

towards a common goal to deliver a potentially shippable increment while maintaining a daily

Scrum under their Scrum master.

The LeSS process begins with a two-part Sprint Planning. The first part is under the

absolute order of the Product Owner, with at most two representatives from each team attending.

The attending team members can slice their cut of the product backlog while the Product Owner

breaks any conflicts. Next is the second stage where the team independently works within their

group to assign tasks. However, if the need occurs to coordinate, it is accepted that the needed

teams communicate between each other. This idea transcends to the daily Scrum where if

information sharing is needed, the teams may attend each daily scrum. To further refine this

process, an optional “Inter-team coordination meeting” where representatives from each team

share information. Halfway through the sprint, each team undergoes a “product backlog

refinement” where planning for future sprints begin. It is recommended to locate in a large room,

which can accommodate every team member, and have white boards or other tools to discuss

thoughts to “apply rotation writing and other large-group workshop techniques” (Vodde, Bas,

and Craig Larman 2013, 3). Next is the Sprint Review which consists of the Product Owner,

other stakeholders, and two members from each team. Instead of a grand reveal of their sprint’s

progress, a “‘science fair’-style” presentation takes place where each team shows their respective

features (Vodde, Bas, and Craig Larman 2013, 3). The stakeholders or Product Owner can then

oversee each feature and pay more attention to their interests while the representatives explain. A

recommended, optional approach before the Sprint Review is to informally seek the Product

Owner or other stakeholders to “reduce the inspection and discussion that would otherwise be

required spent at the Sprint review.” Finally, is the Team Retrospective, which is the same as a

10

Scrum Meeting where the team talks about their difficulties and future plans. As an additional

step, there is an optional Joint Retrospective. This step is held early, usually within the first

week, in the next sprint, where Scrum Masters and a representative from each team discuss

improvements to the for the overall product or organization (Vodde, Bas, and Craig Larman

2013, 3).

LeSS also has a plan for working across multiple locations. LeSS multisite depends on

continuous integration for every step, Free Open Source Software (FOSS) and strong

communication and trust between team members. This is because multisite scaling tends to run

into problems involving licensing, testing, or even bottlenecking due to a member’s knowledge,

or lack thereof (Vodde, Bas, and Craig Larman 2013, 3). For successful Scrum, communication

is invaluable. LeSS mitigates the multisite lack of communication with “free, ubiquitous tools”

such as “Google Hangouts or a projector”. Furthermore, the Sprint Planning and Product

Backlog depend on the aforementioned online meeting tools and online web tools such as

Google Spreadsheets (Vodde, Bas, and Craig Larman 2013, 3). As for the sprint itself, it is a

modification of a one-team sprint, which is later discussed.

Large-Scale Scrum has two variants of which both focus less on the process and more on

the individuals (Kalenda 2018, 4). The first variant of this process comprises of eight or fewer

agile teams that work within an organization. This variation combines the methodology of a

“one-team scrum” with the methodology of a larger number of teams. The second alternative is

called “LeSS Huge” which involves nine or more agile teams working within an enterprise.

LeSS Huge manages its requirements by using scaled practices which include “requirement

areas, area product owners, and area product backlogs” (Kalenda 2018, 5). Because of hundreds

of people and many teams, the Product Owner has too much overhead from the entire process.

11

To mitigate this, Less Huge introduces “Area Product Owners” who serve to focus on one area

backlog (Kalenda 2018, 17). The Product Owner then communicates with the “Area Product

Owners”. Vodde and Larman argue that while a divide-and-conquer approach is unavoidable

with large enough teams on a product, it is still inflexible, slow, and wasteful when dividing into

specific groups of interest, such as architecture (Vodde, Bas, and Craig Larman 2013, 5); divide-

and-conquer via architecture contradicts agile’s philosophy of flexibility, and the overall

overhead between handing it off and dependence on work-in-progresses makes the process

ineffective. Instead of dividing by specific groups, LeSS divides around the customer’s major

area of requirements (Vodde, Bas, and Craig Larman 2013, 5). As a result, a “requirement area”

column is added to the Product Backlog where the teams under their respective Area Product

Owner communicate and follow LeSS process.

RELEVANT STANDARDS

ISO/IEC/IEEE Standards

IEEE Standard 1074, approved, in 1991, is an early IEEE standard for software

development processes, specifically for organizations developing their own development

process. Although published before the widespread popularity of agile, the standard was already

loosely amicable to agile methodologies. Under section 2.1, it states that a software life cycle

model must be chosen for the development of a software product, and that while no specific

implementation is required, all of the activities outlined in the standard should be present in the

life cycle model. The standard may seem strict with a set of required activities, yet it clearly

states that the activities are “non-time-ordered.” They include every process from project

initiation to retirement, which the iterative methods of agile may complete in any order. The

standard even mentions Rapid Prototyping, an iterative approach, as a sample software life cycle

12

model (IEEE 1991, 19). Even before agile became popular, at first amongst small teams, the

standard already paved the way for larger organizations to adopt agile practices by remaining

loose enough that large organizations could adopt agile practices while continuing to conform to

standards set forth by the IEEE. Future standards continue this today, with sections and

sometimes whole standards dedicated to adapting the standards to agile methodologies.

ISO/IEC/IEEE Standard 12207 describes the standards for software lifecycle processes.

The standard’s introduction defines software engineering as a “means to enable the realization of

successful software system.” The introduction asserts that a “structured development process” is

formed in the process of software engineering, beginning with conception of a software product

and moving through to maintenance. While a “structured development process” may seem

counter to agile principles, the standard is actually quite compatible with agile. Inclusion of

multiple disciplines and dedication to stakeholder needs are key principles highlighted in the

standard’s introduction which are also key to the scaled agile frameworks we have seen

(ISO/IEC/IEEE 2017, vii). DAD has a heavier focus on all stakeholders, not just end users,

which is in line with ISO 12207’s approach to meet the needs of all applicable stakeholders,

business technical or otherwise. In fact, the interactive, customer centric approach that all of

these frameworks is in line with the standard. Annex H: Application of Agile describes the many

ways that businesses using agile can claim conformance to the standard. The section points out

that as long as every step in the software process is completed, order does not matter. That is to

say that the iterative approach of agile, where the “stages” of software development might be

done in any order or even in parallel, is not in conflict with the standard (ISO/IEC/IEEE 2017,

127). The two-part Sprint Planning meeting used in LeSS is an example of a planning and design

phase which happens over and over, each sprint, in an iterative fashion. It corresponds well with

13

the Project Planning processes in the standard. Reviews and retrospectives, present in all of the

frameworks presented here, correspond well with the Project Assessment and Control processes.

While scaled agile conforms to the goals of the standard, it does not necessarily conform strictly

to the activities demanded by the standard, instead opting to combine or otherwise change them.

Annex H of the standard then suggests that agile organizations claim conformance to outcomes,

as described in 4.2.1 of the standard (ISO/IEC/IEEE 2017, 127).

ISO/IEC/IEEE Standard 26515 is about documentation in agile projects. This standard is

especially applicable to DAD, since DAD takes a holistic approach to developing, ensuring that

the user receives a workable solution complete with software and documentation. The standard

acknowledges agile’s drive for less documentation, but also acknowledges the user’s need for

clear and helpful documentation. It cites that a reduction in training and help desk support, and

an increase in good reputation are both benefits of good user documentation (ISO/IEC/IEEE

2018, vi). LeSS and SAFe both describe a focus on lowering process documentation, but no

emphasis is placed on end documentation for the user. In this way, DAD is much more amicable

to this standard, as user documentation is baked into the process. It was a deficiency which the

creators of DAD sought to resolve (Ambler 2013, 3).

Standards of DAD

Each of the frameworks has its own set of principles, which can be seen as the standards

for using the framework. An example of this is Disciplined Agile’s principles, described by “The

Principles Behind Disciplined Agile.” The goal of Disciplined Agile is for teams to be

disciplined. For a team to work well together and to know what is good for them, a team leader

must also be disciplined, as without a strong leader teams may work inefficiently and possibly in

a toxic social environment. It takes practice and unbiased observation to see when problems arise

14

and to determine their best solution (The Principles Behind Disciplined Agile 2019, 1). This

record describes the seven principles that act as a standard for what Disciplined Agile should be

and how it should be run.

First to be discussed is delighting customers. The best way to keep a customer happy is to

not only meet their needs but to exceed them. This is often not possible in software projects due

to time and budget constraints. DAD aims to have the team build these expectations into their

plan from the start. By increasing efficiency and quality the development team can produce

products that go beyond what was asked for while still staying within time and budget

constraints.

The next standard of Disciplined Agile Delivery is motivation; a team should be

motivated. Choosing individuals who work well together and enjoy working together is an

important factor in that teams output. A team leader and the development environment should

support teamwork and give resources that will help to lead the developers to success.

After motivation, “The Principles Behind Disciplined Agile” considers pragmatism.

Closely related to delighting the customer, the product should be as good as it can be. If more

features can be added that do not conflict with the stakeholders desires then they should be. If

existing features can be improved in some way, they should be. Being pragmatic in software

development may mean doing more than just what your process says. This is where agile comes

in; it is built to change. Disciplined Agile is where the additional effort and pragmatism comes

in. DAD encourages the resulting product to be the best it can be.

Context and choice are the following standards. Every choice made for a team from the

team members to the strategies to use depends upon the context of the project. Depending on the

context, what the project and team needs, they can make a choice as to what type of methods

15

from other agile practices to use. Such a choice allows a team to find what techniques work best

for them and for their current project. Disciplined Agile focuses on giving the teams the option to

use varying other methods they know when best appropriate.

 Finally, the last practices and standards are optimization and awareness. Having

enterprise awareness means that an individual is working towards the goals of their entire

organization not just towards those of their specific work assignment (The Principles Behind

Disciplined Agile 2019, 1). This ties into optimization, having an organization and workplace

designed so that developers can maximize their efficiency and quality not only affects

optimization, but makes everyone thats a part of the team aware of their teammates and goals.

IMPACT ON Software Development Life Cycle

SDLC: DAD

 Due to the idea of combining multiple other agile methods in the most appropriate way

for a specific team and project, the lifecycle of DAD development can vary. While it is mainly

based upon Scrum and Kanban it encourages the development team and leadership to adopt other

practices where useful (Ramakrishnan, Gopinath, and Ambler 2019, 1). DAD follows the general

agile model and uses the general phases such as Inception, Construction, and Deployment. But it

uses various alternate ideas within these phases; a team could use Sprints and retrospectives,

while also removing formal roles like in LeSS or using a continuous integration format like

Spiral.

 Because DAD encourages the use of other known agile methods when they best fit, it

does not change the Software Development Lifecycle in a significant manner. The only changes

come from when the inherited agile methods change it themselves. Changes from DAD are made

in how each phase of the cycle is completed, not their order or inclusion in the cycle. Thus, DAD

16

has little impact on the Software Development Lifecycle in general. In a more specific context

however, it can foster new versions of the cycle that have not been seen or used before. By

combining the other agile techniques unique processes can be created, and unique development

life cycles along with them.

SDLC: SAFe

SAFe’s approach to software development life cycle combines the elements of agile (both

Scrum and Kanban) and Lean Software Development. SAFe most prominently affects the

planning and development stages during its software development lifecycle, through the use of

Agile Release Trains, Program Increments and the planning tasks that go with Program

increments. The Agile Release Trains (ART) which comprise of conventional size agile teams

operate in eight to twelve week iterations referred to as Program Increments (PI). PI is a

timeframe during which an Agile Release Train (ART) “delivers incremental value in the form

of working, tested software and systems”. A PI typically starts with a PI Planning session

followed by execution iterations, concluding with one Innovation and Planning iteration. During

PI planning session, Agile teams under the umbrella of ART discuss the deliverables for the

integration and demo at the end of the Program Increment. For each execution iteration within

the PI, the Release Train Engineer (RTE) facilitates a weekly or bi-weekly Scrum of Scrums

meeting in order to coordinate the interdependencies between the ARTs, identify any roadblocks,

and discuss the progress of the PI in respect to the overall vision. Each execution iteration is

concluded with an iteration review. Iteration reviews are critical in maintaining transparency and

a flow of information in the feedback loop between the team and the Product Owner. While

arbitrary, four execution iterations are considered to be most effective in a PI, however, the

framework allows flexibility to better accommodate specific organizational needs. PI concludes

17

with the System Demo event where the Agile Release Team presents the integrated overview of

new features to Business and Product Owners, customers, and other ART stakeholders. Iterative

and incremental in its nature, SAFe’s approach to software development life cycle captures the

essence of agile and promotes the best product development rhythm custom-tailored to bridge

market requirements and teams’ capabilities (SAFe: Program Increment 2018, 1).

SDLC: LeSS

Like the other frameworks, LeSS affects all aspects of the software development life

cycle because it is a framework for the software development process. However, the focus on

removing complexity and roles leads LeSS to remove specialized testing and design groups,

leading to a large effect on the design and testing phases of the software development life cycle.

In traditional scrum, the product owner negotiates a internal contract with the Research and

Development (R&D) managers who are responsible for the release. However, LeSS believes the

main power and vision is under direct control of the Product Owner. As a result, there are no

separate R&D roles and no internal contract (Vodde, Bas, and Craig Larman 2013, 1); the role is

simply eliminated and places more emphasis on the Product Owner and individual. This means

that the designing phase is altered due to the lack of specialized R&D roles, but emphasizes more

power to the Product Owner. Additionally, Scrum tends to have sprints that range from two to

four week sprints with a potential shippable deliverable at the end of each sprint. As previously

mentioned, LeSS believes to dissolve the idea of a big release, managing systems, practices, and

its roles. This implies that a “sequential lifecycle” is eliminated, no “prior analysis phase,

architecture phase, and no following integration/testing phase [and] the groups that were attached

to each phase.” However, LeSS states that instead of a potential messy deliverable, sequential

lifecycle development is eliminated, and the groups that comes with it (Vodde, Bas, and Craig

18

Larman 2013, 1). Instead, LeSS believes in continuous integration multiple times a day verified

by automated testing. If a build breaks, a mitigation strategy of stop and fix emerges (Vodde,

Bas, and Craig Larman 2013, 3). Overall, LeSS aims to follow a one-team Scrum approach,

which emphasizes on each individual and the product owner, ultimately altering the design and

testing phases.

CASE STUDIES

Case Study: DAD

 There have been several implementations of DAD in industry; one notable case is from

the company OpenLink Financial in 2016. OpenLink decided to make a change to their

development techniques when they decided they needed to modernize their methods. They

determined that too much time was spent on maintaining product quality and not on

implementing new functionalities (Scott Ambler Associates, Inc. 2016, 1). Scott Ambler and

Associates (SA+A) guided the company to adopt a combination of agile and lean methods, in the

form of DAD practices.

The transition to a disciplined agile approach first began with training. A workshop for

executives and product management was held to educate OpenLink leadership of agile and

disciplined agile practices and advantages. There were two teams assigned with projects under

the new DAD process as pilot tests. Scott Ambler and Associates acted as coaches for the teams

to ensure they used the new models to its full potential and received the most benefit from it.

One of the changes that SA+A made to the workplace at OpenLink was “Agile Pods.” They went

about redesigning the office space into, “three configurations of Agile Pods with sizes of 9 to 20

team members,” (Scott Ambler Associates, Inc. 2016, 2). Team collaboration was shown to

dramatically increase and resulted in better team functioning, better quality software, and shorter

19

development times. After these first two pilot projects were successful SA+A and OpenLink

decided to go further. They spent the next two years launching more teams and projects with this

model in mind. Once OpenLink management and leadership had gotten the hang of operating the

DAD model by themselves, SA+A.

Scott Ambler and Associates still returns to OpenLink periodically to help those who

have mastered the basics of the methods they learned with digging deeper into new techniques

and plans. Since integrating the Disciplined Agile Delivery ideas and methods OpenLink has

recorded, “a dramatic increase in productivity, lower defect counts, fewer customer escalated

issues,” and more improvements (Scott Ambler Associates, Inc. 2016, 1). Tom Marrapodi, Vice

President of Development at OpenLink claimed that the adoption of the DAD methodology

helped, “to dramatically improve… the morale and effectiveness of our teams and their focus on

producing high quality software...” Along with several other testimonies from another OpenLink

Financial executive and the company as a whole, it is clear that the adoption of disciplined agile

ideals in their workplace has guided them to a much more productive environment for the

company and developers.

Case Study: SAFe

According to the data collected from a series of case studies conducted by Scale Agile,

Inc (the organization started Dean Leffingwell, the founder of the Scaled Agile framework), one

of the largest reported SAFe deployments took place at Intel’s Manufacturing Development

Organization (SAFe Case Study: Intel 2019). In a competitive information technology industry,

Intel must continuously improve through innovation, cost control, and quality. As of 2019, Intel

employs more than 100,000 people globally with a net revenue of $59.4 billion. Intel’s

Manufacturing Development Organization (MDO), examined in this case study, is responsible

20

for testing and validation of Intel solutions. Today, MDO produces over two million lines of

code every two weeks. Operating at such volume presents significant challenges in terms of

people and process management. To mitigate that, the Manufacturing Development Organization

first adopted Lean-Agile practices in 2005, later integrating Scrum in 2012, and then started

developing homegrown solution for scaling Scrum (SAFe Case Study: Intel 2019).

As the size of the division kept increasing, MDO began to face challenges scaling Scrum

to meet its every-growing volume when in 2013, MDO discovered the Scaled Agile Framework.

Allen Ringel, Lean & Agile Transformation Leader at Intel who was in charge of the transition

to SAFe, points out the reasoning behind the decision to implement SAFe: “In an organization as

large as MDO we needed to standardize the planning and execution process we use to work

together to deliver value. When we encountered SAFe it provided a proven, public framework,

with well-defined roles and artifacts for applying Lean and Agile at the enterprise level.” (SAFe

Case Study: Intel 2019).

During the first Program Increment planning event, MDO trained more than 1,500

people, assembled and launched eight Agile Release Trains (ARTs) comprised of 170 Scrum

teams, and hired 15 Intel Lean-Agile coaches at the 14 MDO’s sites. In 2017, MDO was merged

with another group to form the group Manufacturing Value Engineering (MVE). MVE, now

twice the size of MDO prior to the merge, rapidly trained nearly 2000 employees in an effort to

integrate the new-comers into existing framework resulting in over 440 Scrum teams of software

and hardware engineers organized into 35 ARTs (SAFe Case Study: Intel 2019).

In the case study findings, Ringel reports that the implementation of SAFe in the division

has impacted the company as a whole and helped it maintain the industry’s rapid rate of growth

by contributing to the 65% increase in product variants with the same capacity delivered by

21

MVE, the improvement of commit-to-accept ratios from 74% to over 90%, while maintaining

the reduction of scope to less than 5%. SAFe deployment fostered increased transparency and

strong performance-to-schedule discipline. “Lean & Agile help us deliver more products without

adding more people, so we may stay competitive and keep up with Moore’s Law,” Ringel says

(SAFe Case Study: Intel 2019).

CURRENT & FUTURE IMPACT

The challenge of scaling a Scrum process for companies and or teams of developers is

not as much of a monstrous undertaking as it one was. As Martin Kalenda emphasises, “there are

several frameworks [nowadays] that can be used to guide the scaling process in organizations”

(Kalenda 2017, 3). Therefore, the current impact of these scaled agile frameworks is reflected in

the large number of companies who have both adopted agile and successfully scaled the process

into a larger framework to utilize its techniques. The impact of a framework is currently derived

by that framework's adoption level. Collectively, 82 percent of companies use a scaled form of

agile with the top framework being SAFe with 28 percent, LeSS with three percent, and DAD

with a 1 percent adoption rate (Kalenda 2017). This is a significantly high number when

accounting for all companies who are presently applying Scrum within their development teams.

To get a sense in quantifying how large of a group works with some companies who use the

LeSS framework, Bas Vodde states their method was “applied in groups [made up of] 1,500

people, involving seven developments sites spanning the globe” (Vodde 2013, 1).

The future impact on the industry by the scaled agile frameworks mentioned above will

become evermore significant as they are gradually adopted and modified. When utilized

correctly, an organization will have the upper edge increasing the possibility to be disruptive

within the industry. As companies become evermore involved with software, “increasing [this]

22

digitalization will cause most (if not all) companies to become software companies [and then

into] ...software organizations” (Kettunen 2017).

CONCLUSION

With the ongoing rapid changes of software, a reflexive and responsive system that

embraced change, while still following a plan, was needed. The “waterfall” methodology was too

linear and could not respond quick enough for immediate actions. This gave to the rise of agile

methodologies where the goal is to continually respond to change while following a plan.

Frameworks, such as Scrum and Kanban soon sprouted from agile’s goal, promising the

reflexive and responsiveness needs. However, Scrum and Kanban tend to only fit for a team size

of four to eight people. The difficulties were evident when projects required hundreds of team

members or teams that are not located in the same area were trying to piece together their

software and efficiently work together.

Disciplined Agile Delivery remedies this with the approach of creating shippable

solutions, not just shippable software, while appeasing their main audience of stakeholders. DAD

emphasizes on discipline, motivating team morale, and optimization, all while under a strong

team leader. Additionally, DAD understands that to deliver a shippable solution, a combined

goal driven methodology such as Scrum, Extreme Programming, and Lean is a common solution

to the organization’s needs (Ambler 2013, 3). The Scaled Agile Framework enhances the Agile

methodology by integrating four new organizational levels: Team, Program, Value Stream, and

Portfolio. By adding these four new levels, teams that range from 50 to 125 individuals are

possible and earn the name Agile Release Trains, which establishes a continuous pipeline with a

vision, roadmap, and set of features for a solution. To ease the communication between teams,

SAFe introduces the Business Owner Team, Release Management Team, and DevOps team to

23

oversee the other teams (SAFe White Paper 2018). Large-Scale Scrum takes a different

approach. Instead of adding more roles and divide-and-conquer solutions, it states in order to

remove unnecessary complexity to the team, the organization must dissolve management, roles,

and organizational structure (Kalenda, 2018, 5). This puts more power into the product owner

and follows a one-team scrum approach, the ultimate goal of delivering a potentially shippable

increment while maintaining a daily Scrum under their Scrum master. LeSS has been shown to

work across multiple locations using “free, ubiquitous tools” and has two versions to

accommodate smaller and larger teams (Vodde, Bas, and Craig Larman 2013, 2, 5).

Agile is necessary in projects which need responsive and reflexive changes which can

continuously deliver and show results. Scrum takes the agile principles and expands on it. Big

businesses need agile practice but they need them to scale, and new software methodologies have

emerged to fulfill this need. Evidence shows that DAD, SAFe, and LeSS can significantly

improve the software development process while working across hundreds of team members. As

companies grow, scaling agile will be seen as a norm due to the promises of agile and growth of

businesses.

24

BIBLIOGRAPHY

Alqudah, Mashal & Razali, Rozilawati. (2016). A Review of Scaling Agile Methods in Large

Software Development. International Journal on Advanced Science, Engineering and

Information Technology. 6. 828. 10.18517/ijaseit.6.6.1374. Accessed April 08, 2019.

https://www.researchgate.net/publication/311916796_A_Review_of_Scaling_Agile_Met

hods_in_Large_Software_Development.

Ambler, Scott W. "Going Beyond Scrum Disciplined Agile Delivery." Disciplined Agile

Consortium. October 2013. Accessed April 8, 2019.

https://disciplinedagileconsortium.org/Resources/Documents/BeyondScrum.pdf.

Beck, Kent, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin

Fowler, Robert C. Martin, Steve Mellor, Dave Thomas, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Ken Schwaber, and Jeff Sutherland.

Manifesto for Agile Software Development. PDF. Agile Alliance, 2001.

Henseler, Tomás. "Timeline of Software Development Methodologies." Hexacta. February 05,

2018. Accessed April 09, 2019. https://www.hexacta.com/2018/02/05/timeline-of-

software-development-methodologies.

IEEE Standard for Developing Software Life Cycle Processes. New York, USA: IEEE,

2017.

ISO/IEC/IEEE International Standard - Systems and Software Engineering — Developing

Information for Users in an Agile Environment. New York, USA: IEEE, 2018.

ISO/IEC/IEEE International Standard - Systems and Software Engineering -- Software Life

Cycle Processes. New York, USA: IEEE, 2017.

https://www.researchgate.net/publication/311916796_A_Review_of_Scaling_Agile_Methods_in_Large_Software_Development
https://www.researchgate.net/publication/311916796_A_Review_of_Scaling_Agile_Methods_in_Large_Software_Development

25

Kalenda, Martin, Petr Hyna, and Bruno Rossi. Scaling Agile in Large Organizations: Practices,

Challenges, and Success Factors. May 16, 2018. https://onlinelibrary-wiley-

com.ezproxy1.lib.asu.edu/doi/full/10.1002/smr.1954.

Kettunen, Petri, and Maarit Laanti. "Future Software Organizations – Agile Goals and Roles."

European Journal of Futures Research 5, no. 1 (December 16, 2017).

doi:10.1007/s40309-017-0123-7.

Leffingwell, Dean. "About Scaled Agile Framework." Scaled Agile Framework. October 03,

2018. Accessed April 08, 2019. https://www.scaledagileframework.com/about/.

Ramakrishnan, Gopinath, and Scott Ambler. "A Hybrid Toolkit." Disciplined Agile (DA).

January 17, 2019. Accessed April 9, 2019.

https://disciplinedagiledelivery.com/hybridframework/.

Rehkopf, Max. "Kanban vs Scrum." Atlassian. 2019. Accessed April 08, 2019.

https://www.atlassian.com/agile/kanban/kanban-vs-scrum.

"SAFe Case Study: Intel Staying Ahead of Moore’s Law Intel MVE Delivers 65% More Product

Variants." Scaled Agile Framework. Accessed April 08, 2019.

https://www.scaledagileframework.com/case-study-intel.

"SAFe White Paper." Scaled Agile. November 2018. Accessed April 07, 2019.

https://www.scaledagile.com/resources/safe-whitepaper/.

"SAFe: Program Increment." Scaled Agile. 18 October 2018. Accessed April 07, 2019.

https://www.scaledagileframework.com/program-increment/.

Scott Ambler Associates, Inc. "ENTERPRISE AGILE TRANSFORMATION: A PRODUCT

COMPANY’S SUCCESSFUL ADOPTION OF DISCIPLINED AGILE." Disciplined

Agile Consortium. 2016. Accessed April 9, 2019.

https://www.scaledagileframework.com/case-study-intel

26

https://disciplinedagileconsortium.org/resources/Pictures/Case studies/Approved Open

Link Case Study.pdf.

"The Principles Behind Disciplined Agile." Disciplined Agile (DA). February 21, 2019.

Accessed April 11, 2019. https://disciplinedagiledelivery.com/principles/.

Vodde, Bas, and Craig Larman. Scaling Agile Development. CrossTalk. June 2013. Accessed

April 10, 2019.

http://static1.1.sqspcdn.com/static/f/702523/22609354/1367558447003/201305-

Larman.pdf?token=q/dHT7DJOn7C1byQkY2lTjVkvso=.

Healthcare Systems
A look into the Software Engineering in the medical field.

Team 404

Elizabeth Layman elayman1

Christopher Cody cdcody

Jack Northcutt jgnorthc

Nubian Tesfai ntesfai

Joshua Bresette jbresett

Student Written Work - Sample 3

1

Table of Contents

INTRODUCTION 2

TECHNICAL SUMMARY 4

RELEVANT STANDARDS 8

CURRENT AND FUTURE IMPACT 12

SOFTWARE DEVELOPMENT LIFECYCLE (SDLC) IMPACT 16

CASE STUDIES 20

The Therac-25 Failure 20

Medtronic Pacemaker Recall 23

REFERENCES 26

2

INTRODUCTION

In our increasingly technology-focused world software permeates practically every

activity and industry known to man. Software and computer systems guide planes through the

sky, control entire factories worth of equipment, and create more data yearly than has ever been

compiled by humanity to date. One important industry that has come to rely increasingly on

software systems is that of healthcare. The business of saving and prolonging life is a vital

component of modern society, and the numbers speak to that effect. According to the Center for

Medicare and Medicaid Services, the United States alone accounted for annual healthcare

expenditures of 3.5 trillion dollars in 2017, which made up a massive 17.9% of the country’s

GDP {CMS}. This industry is not likely to decline in the near future either, as current

projections predict that healthcare will grow faster than GDP until at least the year 2027.

To many, healthcare is an industry and a business that holds great importance in the

global economy. While the financial impact of this sector is clearly of great interest to society as

a whole, it is also important to account for the individual person and their perceptions..

Healthcare has a deep personal importance to many people who have experienced issues with

illness or their mental well-being, whether directly or through those they know. This importance

stems not just from the visible life saving outcomes of many healthcare procedures, but also from

a general capacity to increase peoples’ quality of life.

Given the enormous importance of the healthcare industry on both people and economies,

it follows that software engineering within this context inherits a great degree of this importance.

There is great potential for growth in medical software, but the immense stakes involved result in

an element of risk that is rarely matched among other domains. The risks involved in medical

3

software stem from a variety of causes and can result in a wide range of negative effects on

patients, healthcare clients such as hospitals, and the parties who develop such software.

One of the primary risks in the healthcare sector is the continued well-being of the people

who depend on it. This is particularly the case in embedded device applications, as there are

many people whose lives rely upon such devices every day. Medical systems are often tasked

with monitoring insulin levels, dispensing medication, and other functions that require near 100

percent reliability to be considered effective. Software is often only a single component of these

systems, but it is nonetheless critical in the proper function of these devices.

Unfortunately, the issues with medical systems are not always limited to merely failing

homeostasis, but also have the potential to cause exceptional degrees of active harm. The dangers

involved are of such magnitude that one of the most infamous disasters in all of information

technology is an unfortunate example of medical software: the Therac-25 radiation therapy

machines [1]. This incident resulted in the deaths of at least six people, which is a testament to

the level of risk involved to the lives and quality of life for patients using medical software.

Although loss of life is arguably the most pressing consequence of the Therac incident

and others, there are other interested parties across the entire market that are also affected heavily

by such tragedies. The companies involved in medical software failures can be drawn into

extremely costly lawsuits, which can harm businesses and careers, although such consequences

could be considered just [1]. The Software Engineering Code of Ethics and Professional Practice

defines 8 principles of ethical practice within the profession [2]. Four of these principles stand

out in the context of such failures. These responsibilities are to act consistently with the public

interest, act in the best interests of clients and employers, ensure that delivered products meet the

highest professional standards, and to further the integrity of the software engineering profession

4

within the public eye. These ethical and professional duties are a major part of what it means to

participate in the healthcare industry, especially those with the decision making power to affect

lives.

TECHNICAL SUMMARY

 The high level of risk and serious ethical implications that pervade medical software

demand a level of quality that cannot be met through individual measures or ad-hoc processes.

Rather, practitioners within this domain, with assistance from federal agencies and private

companies, have developed a rich ecosystem of technical and organizational techniques meant to

assure positive outcomes throughout the lifecycle of each product. These techniques include

national and international standards, improvements to the verification and validation processes,

improved testing models, and high traceability requirements.

 One of the key forces in the technical development of this sector within the United States

is the Food and Drug Administration (FDA). While regulatory agencies rarely contribute new

concepts, their ability to canonize certain practices and standards sends ripples throughout the

whole software process. This is especially the case within the areas of software requirements

engineering and system validation. Any software component in a medical device developed after

June 1, 1997 is subject to the FDA’s regulations on software validation [3]. While the term

“software component” initially seems limited only to the product in question, it is much more

broadly encompassing than might be expected. FDA guidance and regulations apply directly for

the following categories of software: software used as a component, part, or accessory of a

medical device, software that is itself a medical device (e.g., blood establishment software),

software used in the production of a device (e.g., programmable logic controllers in

5

manufacturing equipment), software used in implementation of the device manufacturer's quality

system (e.g., software that records and maintains the device history record), and software used to

manage electronic records and signatures [3].

 One validation technique that applies to these categories of software is the design review.

In a design review, the system’s current design artifacts and decisions are examined by

stakeholders in and outside of the development team. The review team asks questions such as

whether development tasks have been fulfilled and the proper outputs produced. These results

are then documented and referenced against any other reviews or internal standards that may

apply. Such design reviews are common in all fields of software in both formal and informal

styles, but medical software is uniquely obligated to include this practice. According to section

3.5 of the General Principles of Software Validation, FDA compliant software systems must

include at least one formal design review [3].

 Another nearly universal validation technique used in medical software is software

testing. All production software systems have an interest in assuring that code works correctly,

and medical systems are no exception. Testing is often performed using standard metrics and

techniques such as path coverage and boundary value analysis [3]. Path coverage tests every

possible route from beginning to end: if a device had multiple switches and sensors, every

combination of switch and sensor would be tested. Boundary value tests input values and

incorrect values to see how the program would respond: if the software is expecting someone to

enter a number between 0-100, what happens at 0, 50, 100, -1, 101, and ‘q’ are entered? Despite

all these methods, the difficulty still remains that no non-trivial software system can ever be

completely tested. The safety-critical nature of the healthcare industry has thus encouraged

software engineers to adopt innovative and intensive new testing methodologies.

6

One such testing strategy is statistical software testing. In a general sense, statistical

testing is often thought of as testing with a collection of random test cases. This simplified

definition is problematic, however, as it misses out on many factors that make statistical analysis

so powerful. In the words of statistical testing leader Jesse Poore, “The term should be

understood, however, as the comprehensive application of statistical science, including

operations research methods, to solving the problems posed by industrial software testing [4].”

 One of the foundational concepts in statistical testing is the usage model. A usage model

is a “formal statistical representation of all possible uses of a system” often represented as a

familiar state graph [4]. One method that can be used to determine the nodes and edges within

this diagram is a high level set of use cases. This has the advantage of interfacing well with UML

use case diagrams and user requirements, but is not always formal or traceable enough to be

sufficient for medical contexts. Another process that may be preferable is the formal sequence

specification defined by Poore and Prowell [5]. This process has the advantage of adding

determinism and traceability to the sequence, which is particularly desirable in the medical field.

 The newly created usage model is then evaluated using simulations and walkthroughs of

system usage. This process creates a large amount of data that can be used to determine the most

failure prone sequences and processes, which then feeds into creating test cases that have a

greater chance of discovering defects than simply generating numbers. While this method of

software testing is fairly intensive, the scale and risk of medical software systems makes

statistical testing a promising prospect.

 Another way that software in the healthcare sector distinguishes itself is in a heavy

emphasis on highly traceable requirements. Broadly speaking, traceability is about being able to

ask “why” with regards to any given subsection of a system, no matter the level of granularity.

7

For instance, a line of code might be traced to a write buffer component, which might be traced

to a caching routine, which may have been specified in order to fulfill a high level performance

requirement.

 One benefit of traceability is that speculative design and unused code artifacts are

reduced. Another benefit that is increasingly relevant in today’s distributed society is in

providing a single source of truth across organizations [6]. When a project involves multiple

team members across what might be dozens of locations, knowing an exact “why” is

exceptionally valuable. By providing a detailed, project-wide set of requirements that links every

line of code to a reason for existing, traceability cuts down on unnecessary complexity in the

codebase. Complexity is a major cause of issues in almost any field, so risky sectors such as

health are thoroughly incentivized to invest in such measures.

 Traceability standards are valuable enough to be used in a variety of fields. Formalized

specifications exist in the automotive, aerospace, nuclear, and rail control industries in addition

to medicine [6]. Specific standards organizations in health software include ANSI/AAMI/IEC

led by the Association for the Advancement of Medical Instrumentation, the European Medical

Device Directive, the US FDA, and the ISO [6].

The specific standard that will be discussed here is the FDA’s guidance on software

validation [3]. One reason is that the FDA has arguably the greatest regulatory power of any of

these organizations, so these standards are near universally applicable within the United States.

Another is that its stipulations are fairly generic, which gives a greater understanding of

traceability issues as a whole rather than one particular instantiation of these practices.

Traceability in the design phase is largely an issue of assuring that software requirements

are sufficiently relevant to the system requirements and the results of risk analysis activities. The

8

recommended solution for this task is a formal design review. Such a review will involve

conversation and confirmation between business and technical staff that are meant to answer the

key questions of traceability analysis. Once design artifacts are produced using these

requirements, another check is made to verify that all design choices and software requirements

are interconnected. This pattern continues for implementation and testing, with each component

being traced up the requirements hierarchy. So long as this bidirectional flow holds for every

component in the system, the FDA’s traceability requirements are met. The specifics of how

these checks are made vary by organization, but the general pattern is the same.

In conclusion, healthcare is a high-stakes industry that demands a great deal of technical

competence from its practitioners. As such, the software engineers who work on such systems

have invested immense amounts of effort into their methodologies and techniques. Detailed

verification and validation processes give stakeholders confidence that medical devices will

continue to improve the quality of life for patients. Among these processes are innovative testing

methodologies that have the potential to revolutionize interactive software systems as a whole.

Finally, an emphasis on traceable requirements has helped this field to become a leader in best

practices for safety critical systems.

RELEVANT STANDARDS

Like many advanced Software Engineering domains there are set standards that

Healthcare Systems must maintain and demonstrate. When it comes to healthcare systems, these

standards apply greatly to clinical life-critical systems and are expected to ensure the utmost

safety and reliability to the user. In order to ensure this level of safety and reliability, healthcare

systems follow guidelines set by HIPAA. HIPAA provides two key rules that play a role in the

9

type of software they allow to run their system. These rules are the HIPAA Security Rule,

HIPAA Privacy Rule and National Institute of Standards and Technology Cybersecurity

Framework. HIPAA Enforcement Rule is the factor that keeps the healthcare industry adhering

to those rules.

 One in regard to how Software Engineering influenced healthcare, would be information

security. “A covered entity or business associate must comply with the applicable standards,

implementation specifications, and requirements of this subpart with respect to electronic

protected health information of a covered entity” [7]. Maintaining information and protecting

patient confidentiality is crucial to healthcare profession. Healthcare professionals can pull a

patients files in a fast, efficient and manageable way. The field was able to take the paper copy

document and translate it to a digital copy that could be protected from improper data changes to

stored files, provide authorized users access to documents quicker for patients with medical

emergencies and effectively provided patients with a form of secure confidentiality between

doctor and patient. “Today, providers are using clinical applications such as computerized

physician order entry (CPOE) systems, electronic health records (EHR), and radiology,

pharmacy, and laboratory systems. Health plans are providing access to claims and care

management, as well as member self-service applications” [8]. Software engineering also

provide technical safeguards for healthcare companies and employees. These include access

control(provides authorized personnel with access to e-PHI), audit control(procedurally control

the activity on e-PHI), integrity controls(measures to ensure e-PHI can not be improperly altered

or destroyed), and transmission security(technical security to prevent unauthorized access to e-

PHI packets that are sent over a network) [8].

10

Another one in regard to how Software Engineering influenced healthcare, would be

information privacy. “A major goal of the Privacy Rule is to assure that individuals’ health

information is properly protected while allowing the flow of health information needed to

provide and promote high quality health care and to protect the public's health and well being”

[9]. Privacy is extremely important in healthcare. Information protected by the Privacy Rule

includes the patient's physical or mental health or condition, provision of healthcare to the

individual and payment in the future toward their healthcare. One of the ways software can help

provide an avenue for healthcare is securing documents for healthcare employees who are

authorized to access them and enforce privacy for the patient. Software provided healthcare a

way to move from paper to digital documents. This in turn restricts and lowers the amount of

people handling confidential patient files and the less people who handle said confidential

documents, the less of a chance of a violation towards HIPAA. While lowering handling it also

can keep track of who is interacting with any information stored in their system, which we will

go into later on. Other ways software can benefit healthcares privacy standard is by the data

encryption(to eliminate even unauthorized people that do get their hands on data from knowing

the contents), audit trails and password protection. The more boundaries a system has the better,

due to more securities directly relating to less chance of privacy breach.

Along with those rules, the healthcare profession also follows a set of standards created

by the National Institute of Standards and Technology (NIST) Cybersecurity Framework. “The

Cybersecurity Framework provides a voluntary, risk-based approach—based on existing

standards, guidelines, and practices—to help organizations in any industry to understand,

communicate, and manage cybersecurity risks” [10]. This is a standard on a more technical level

that goes hand in hand with the HIPAA Security Rule and provided slight cross over to help

11

companies find potential risks more effectively. “A HIPAA covered entity or business associate

should be able to assess and implement new and evolving technologies and best practices that it

determines would be reasonable and appropriate to ensure the confidentiality, integrity and

availability of the ePHI it creates, receives, maintains, or transmits “ [10]. Some categories the

NIST covers would be access management, business environment, governance, risk assessment

and risk management strategy. There are many more as well covering all aspects of

cybersecurity. One last note. “Users who have aligned their security program to the NIST

Cybersecurity Framework should not assume that by so doing they are in full compliance with

the Security Rule. Conversely, the HIPAA Security Rule does not require covered entities to

integrate the Cybersecurity Framework into their security management programs ” [10].

Healthcare still needs to be careful because compliance with one standard does not mean

compliance with all other standards especially if there are common rules in both.

HIPAA also has an enforcement policy if any privacy or security policy is

violated.”Enforcement Rules to implement statutory amendments under the Health Information

Technology for Economic and Clinical Health Act (‘‘the HITECH Act’’ or ‘‘the Act’’) to

strengthen the privacy and security protection for individuals’ health information” [11]. HIPAA

uses the enforcement to lower the amount of violations that occur, since there are consequences

in place to handle violators. One example is how software can track who has access to

information at a certain time. This means it can be tracked and if it is noted that someone

violated the privacy or security rules while doing so. They can use the enforcement rule to instill

consequences on the person who did. The enforcement rule is constantly updating and affects all

other rules to better interaction between employees and patients. The privacy and security rules

keep the patients interest, while the enforcement monitors the employees in the healthcare field.

12

Making sure everyone is benefited that has some form of interaction with the healthcare system.

Without these set guidelines it would be very hard to maintain a well functioning healthcare

system with their employees and patients in mind. These are just a few reasons why the

healthcare field relies so heavy on well built software systems and due to most impacts being

beneficial healthcare will continue to dive deep when it comes to improving their software

systems.

CURRENT AND FUTURE IMPACT

Software engineering has been expanding rather quickly in the healthcare field. The

healthcare field went from a time of having paper records and stethoscopes, to electronic records

and to a wearable pacemaker, stabilizing a weak heart’s beat. In today’s world, as software

quality improves and society continues to push technology forward, there are less and less

devices and systems in the healthcare field that are not controlled by some type of software [12].

With all these advances in software in the healthcare field, where does software engineering

stand in the healthcare field today? Where is software engineering headed in the future of

healthcare systems? Software engineers need to understand the present and future impacts in

order to produce more reliable software.

 Today in health care, medical software is in a state of convergence, where software

engineers, are in the process of combining medical software with non-medical software [13].

This convergence is the integration of medical devices and IoT, which has a few problematic

issues. “Medical software falls under federally required quality and design controls that apply to

firmware, standalone software applications, software for installation in general-purpose

13

computers, accessories to medical devices containing software, and commercial off-the-shelf

software used in medical devices,” [13]. Basically, every device or system involved in the

healthcare field that utilizes some sort of software, is regulated under specific quality measures.

The issue lies in the connection to the external devices because external devices that are outside

the health care system may not necessarily abide by the same standards as the devices in the

healthcare system [13]. If a patient had a phone application that monitored the status of their

attached pacemaker, the patient wouldn’t want an application malfunction that would result in

their death. It is a software engineers responsibility to ensure quality measures are applied across

the board.

In 2016, a study was done that found there to be approximately 251,454 deaths that were

related to medical errors in the United States and “nonfatal medical errors is between $17 billion

and $19 billion each year” [14]. This is an issue that may be considered the driving force for the

convergence and integration of medical software in the healthcare field. “It has given rise to a

comprehensive socio-technical model for managing healthcare through software solutions” [14].

Though with the rise in software, in the healthcare field, the question arises, can we trust the

software? “Unregulated medical devices rarely find their way to patients, the same cannot be

said about the largely unregulated market for health applications and software” [14]. This is a

real issue in healthcare field that may often be forgotten about. The healthcare devices may be

regulated and have regulated embedded software to help ensure the safety of the patients, but

what about the healthcare software that actually manages the healthcare system, such as

processes and procedures? These too need to have more strict regulations to improve patient

safety and also promote a higher level of efficiency of health care staff, which may in turn reduce

the overall cost to the patients[14].

14

 Software engineering may have made many advances over the years in that allowed for

expansion of the healthcare system, but the United States is still behind on the adoption rate of in

health information technology [15]. This is primarily due to financial issues in the healthcare

field in general and the type of government [15]. Since the United States does not have

socialized medicine in the United States, there is not a single, unified health care system. Now

the United States does not need to necessarily have a single health care system, but it is currently

in a state where the system is not unified. Why would a for-profit hospital want to spend their

money on providing a global system of information that can be shared between hospitals? “A

doctor in an emergency department still faces the problem of having no information about the

past history of his patient other than what the patient was able to tell,” [13]. This quote

summarizes the current state of software engineering in software. There are many hospitals

throughout the United States, but if a person travels and gets into an accident, the hospital

treating the patient may not be able to determine the proper treatment for the patient in an

immediate situation due to not having all patient records on file.

 So where is software engineering headed and what is the future impact of software

engineering in the healthcare field? As discussed previously, software engineering is currently in

a state of convergence and at the point where software engineers are beginning to merge the

healthcare software with the software of the outside world [13]. Software engineering should be

pushing for a time where healthcare software is integrated to be able to communicate across the

United States and possible all around the world. The United States could possibly be at a point

where it doesn’t matter which hospital a patient is at , and the doctors will be able to know the

patient’s medical history, which could potentially save many lives [15].

15

 In the future development of healthcare software, software engineer’s will continue to

build upon and improve trustworthy software models and frameworks because “There is a need

to formulate a healthcare software model that can accurately propagate trustworthiness

throughout the process” [14]. This can be done by enhancing: security, efficiency, safety,

functionality, reliability, regulation, validity and accuracy, which are the main attributes of a

trustworthy software system [14]. A key factor in improving the software development process

in healthcare depends on the continued use of SPI (Software Process improvement). “(SPI)

framework for the medical device industry acts as a key enabler of best practice for the

healthcare sector” [14]. With a solid software improvement model, the medical software industry

can only continue to improve the software development process by continuing to resolve issues

as they come, which is done by assessing the process through continuous iteration of each phase

of the software development cycle [14].

 Software engineer’s still have a lot of work to do in the healthcare field to refine the

process in order to make this dream happen. Software engineers in the healthcare field need to

strive to learn more about the healthcare industry to better understand the risks that are involved.

Software engineers can always do various testing to reduce the number of bugs in a software

system, but can never limit them completely [13]. “Medical software demands the establishment

of its own best practices and management strategies within hospitals,” [13]. As long as software

engineers continue to develop and refine the software development practices and develop a

stronger knowledge base of the type of healthcare system the engineers are developing, software

engineering will continue to launch the healthcare industry into the future.

16

SOFTWARE DEVELOPMENT LIFECYCLE (SDLC) IMPACT

In engineering we rely on minds to produce solutions to problems and most of those

solutions are the result of a logical process. Any successful software product or solution must

satisfy the requirements of the end users and stakeholders while at the same time being free of

any defects. This is a very large task to undertake because of the inherit degree of complexity

involved not just in the writing of software, but in the efficient use of available resources to

optimize both budget and time constraints that exist. In healthcare there is a growing need for

new software products that support better patient outcomes and reduced waiting time and costs.

But there are also external requirements that demand software be built with existing standards

and regulations in mind.

 “Businesses now operate in a global, rapidly changing environment…Software is part of

almost all business operations…”[16]. Because hospitals need to respond to competitive

pressures like any other business there is a need for processes that tracks progress and plans

project activities in advance. Because of this software development in the healthcare domain is

created under what is called a Software Development Life Cycle (SDLC) framework. Generic

process frameworks that are typically used in software development include the waterfall model,

incremental development, integration and configuration and rapid software development

otherwise known as agile.

Johannessen, Liv; Ellingsen, Gunnar [17] write “When traditional waterfall methods are

seen as bureaucratic and slow, characterized by a pre-planned process of requirements capturing,

analyzing, designing, coding, and testing, agile methods are seen as the opposite.”. They go on to

write that during the development of a new laboratory service ordering system from Well

17

Diagnostics early requirements from the users were difficult to extract. “When Well Diagnostics

started to build a system for electronic requisitions from scratch, they faced many unknown

factors. Initially they had some ideas for the technological concept, but the developers did not

know the work practices of the users well enough to be able to develop the system on their own.

They had also experienced earlier that users were not usually able to formulate their needs and

requirements well enough. Well Diagnostics therefore saw an agile approach as a way to make

up for these shortcomings” [17].

 It is important to mention that no software process will perfectly match every

project as requirements and outcome expectations are different for each project; the SDLC or any

framework can be adapted to meet those requirements and outcome expectations. Because of the

difficulty in extracting requirements can vary significantly, as in the separate case of the

acquisition and purchase of software to assist in the Home Health care portion of a hospital.

McMurtrey writes “To that end, we met with the various stakeholders (i.e., the Director of the

Home Care facility and potential end-users) to map out the requirements needed from the new

system. Copious notes were taken at these meetings, and a conscientious effort to synthesize our

recollections was done. Afterwards, the requirements were collated into a spreadsheet for ease of

inspection ” [18]. The final software package would be purchased from a set of three vendors.

In contrast to the electronic lab service software, the home health software acquisition

project was able to document and define the requirements gathered by management and other

stakeholders. The home health project as previously stated opted for a more agile approach,

despite having access to the user group of the software to be developed, the designer of the Well

Diagnostics project stated that it was “impossible for them to communicate their needs in

technical terms as it is for us to transform the technology into their needs. So that is why this [the

18

agile approach] is an efficient way of cooperating. If you deliver software frequently you get

corrections all the way to get you onto the right track”.

 Another instance of the SDLC being adapted to achieve a set of functional

requirements is when medical devices are designed with security at the beginning of a new

project. Fernandes, Avelet; Pai, Anusha; Colaco, Mesquita recognize the need for security that

conforms to existing standards in healthcare; “Health data is highly sensitive and any system

handling such data needs to be protected adequately. Specific regulations such as HIPAA (Health

Insurance Portability and Accountability Act of 1996) in the United States have been created to

protect such health data.”[19]. The alternative approach was to integrate the Open Web

Application Security Project (OWASP) standards integrated throughout the development life

cycle resulting in a “Secure-SDLC for IoT”[19]. Because this was an application for healthcare

compliance requirements were identified by both HIPAA and the Payment Card Industry (PIC)

of the United States of America.

 Designing a software application with security embedded throughout the SDLC

cycle was done using security threat modeling techniques. “All the threat modelling approaches

revolve around the two main methodologies STRIDE and DREAD. STRIDE method is used for

threat identification while DREAD method is used for risk computation.” [19]. During

development, code reviews intended to “identify common coding errors which can pose security

risk.”[19]. These errors are recognized by: “hardcoded connection strings in the web.config

file…”, “comments containing passwords” & incomplete logging which assist the user or system

in recognizing the source of a defect.

 Another example of a framework adapted to measure the progress and processes

for a medical imaging software product was to merge the best practices from the Lean principles

19

defined by the Toyota Motor Company, and Agile frameworks. Manjunath, Jagadeesh &

Yogeesh describe Lean as such: “Lean is a production practice and the philosophies say to

eliminate the waste and increase the value to the customers. It defines 7 principles in total, each

one identifies the opportunity to improve the product quality, tries to reduce the risk through

early feedback, removal of wastages and increasing the cost factors” [20]. They further highlight

the differences between waterfall model and agile being that code developed under the waterfall

model is “released with minimal Integration test - code contains a lot of bugs”[20]. To overcome

this the developers adopted continuous integration during the testing of the software; once a

requirement is completed it is handed over to quality assurance (QA) for testing and feedback is

given to the developers.

 A strong argument is made for adopting the previously mentioned framework &

Lean principles in the development of software for the healthcare industry based on figures

comparing the number of defects found in the same software project developed using the

waterfall model. They write: “… when compared to waterfall where the requirement is

completely implemented and then it is given for black box testing…Total number of defects

found in all phases of testing is 2788 in traditional waterfall model and with iterative

development. And the number is reduced to 1271 in Iterative + Agile.”[20]. Although the

previous projects examined skew towards favoring the agile software process (with some

modifications added); this is not to say the waterfall is obsolete.

 As previously mentioned in McMurtrey’s review of the SDLC process used in the

purchase and acquisition of software for a healthcare facility; requirements were determined

defined in the same phase. The design & development phases were skipped in this case study

because both were already carried out by the vendors of the software. Implementation of the

20

Home Health care unit “…utilized the Parallel Installation method for approximately 60 days

before the “go live” date.”[20]. Hospital staff would enter patient data into both the old system

and the new system to minimize “disruption” according to the Director of the Home Health Care

unit. Training occurred in two phases with approximately half of the staff trained one week and

the rest the following week. This method of delivery of the end product could be beneficial in

cases where stakeholder’s needs are clearly defined. But in other cases such as the electronic

laboratory services ordering system[17], the medical imaging application[20], an iterative

approach to delivery may be preferred by both the developers and the customer.

 Typically, in agile software development emphasis is placed on delivering

working software to the customer as frequently. Four to six-week iterations were used in the

development of the medical imaging application where a “mini-release” was done at the end of

the iteration period. This approach allowed for consistent and on time delivery of working

software throughout the SDLC. Well Diagnostics followed a similar approach but released the

first solution to their customer after four months into the project. “The developers at Well

Diagnostics worked in three-week iterations. The first step in an iteration was to collect user

stories and estimate the work involved in fulfilling them.”[17].

CASE STUDIES

The Therac-25 Failure

One of the more famous cases in the history of medical technology failure involves the

Therac-25, a radiotherapy machine made by Atomic Energy of Canada Limited (AECL) in 1982.

This machine was designed to treat cancer using ionization therapy. However, Several incidents

had occurred with this model. “Between June 1985 and January 1987, six known accidents

21

involving massive overdoses by the Therac-25 - with resultant deaths and serious injuries [1

pp.18].” There were a series of causes for this issue, including lack of mechanical backups, a

poorly constructed designed development process, poor programming, and how the issues were

handled once they were found.

The leading cause of the accidents was the Therac-25 relying more on software than its

predecessors. The prior model, Therac-20, had “independent productive circuits for monitoring

electron-beam scanning, plus mechanical interlocks for policing the machine and ensuring safe

operations [1 pp.20]”. These safety features were removed for development of the Therac-25,

with it relying on cheaper software checks instead. These checks were found to be less reliable:

many of the Therac-25 failures would not have been possible on the Therac-20. This leads to one

of the key engineering aspects for medical and other life-critical systems: knowing when not to

rely on hardware, and to apply mechanical backups whenever possible.

The second cause was a poorly constructed development and design process. Leveson

and Turner described several of the failures in detail [1 pp.20-21], including: having a single

developer, limited documentation, minimal testing that lacked a test plan. The lack of a second

developer prevented peer review and pair-programming, allowing for errors that would have

otherwise been caught. The documentation issue made finding the cause and resolving the errors

more difficult in the long run. Additionally, the lack of good testing allowed several bugs to go

through which would have otherwise been caught. These issues highlight why the entire

development process is critical to good programming. The code had passed the tests

(verification), however the tests were not made to cover all the needs of the software

(validation). Proper test plans, documentation, and development scope ensures the code is fully

validated: that it fulfills all it’s stakeholder needs and runs in a real-world environment.

22

The third cause was poor software design. Research into the software design found that it

“allows concurrent access to shared memory, there is no real synchronization aside from data

stored in shared variables[1 pp.21]”. The poor design allowed for race conditions, where setting

a value from 0 to 1 and reading it immediatly after could still get a 0 back, or some other value

entirely. This meant some of the safety checks would always show as “OK”, even when an issue

occurred. The problem also relates to the lack of proper testing: the situations where the error

occurred were either not tested for, or not run enough times to catch it.

The last cause was how the issues were handled once they were found. The first known

case, detailed by Leveson and Turner [1 pp.21-23], showed several points where multiple people

either delayed or disregarded the issue. After a patient claimed they were burned, the technician

denied the possibility. A later request to the AECL had them also respond that the Therac-25

could not cause that problem. It was only a year later, when the AECL received a lawsuit, that

further investigation to the machine’s operations began in earnest. This shows the criticality of

the support and maintenance phase, especially in medical systems. This goes beyond the scope of

the developer, on how issues are handled by the medical staff, their hospital, and the company or

companies that designed and built the machines. While this would not have prevented the first

issue, had it been taken more seriously the issues would have been found earlier and less patients

would have been overdosed.

This case exemplifies why the software engineering process needs to be well developed

for the medical field. The Therac-25 failure was not a single step, but a cascade of issues that

occurred throughout the entire process line. Requirements were not properly set prior to starting.

Design removed critical backup components. The coding was not well designed, and testing far

too limited in both scope and amount. Support and maintenance were minimal, and lacked proper

23

handling of the accidents. Because of the lack of a proper development process, several people

were killed or seriously injured.

Medtronic Pacemaker Recall

Cardiovascular devices, including defibrillators and pacemakers, are an important part of

life-saving medical technology. They also include the highest recall rates for hardware and

software issues. Alemzadeh et al.’s report [21 pp.22] shows the statistics from FDA reports over

the course of 6 years, from January 2006 to December 2011: 586,079 defibrillators, 40164

pacemakers, and 38,394 arrhythmia detectors were recalled. Due to system failures, there were

376 dead and 17,662 injuries from these devices. These devices are the largest recall issues to-

date, with “73.8 percent (31/42) of class I [high risk of severe injury or death] recalls were for

cardiovascular and general hospital devices, such as defibrillators, patient monitors, and infusion

pumps [21 pp.21].” This makes the process of developing, building, and monitoring issues for

Cardiovascular devices as one of the most life-critical in the medical field. One specific case, a

recent pacemaker recall by Medtronic in January of 2019, highlights why building a thorough

testing process is important, the cost when a flaw is found in the field, and the life-saving

benefits when the rest design and maintenance phases are done right.

Building a thorough testing process is a critical part of the software engineering in the

medical field. Similar to the Therac-25 situation, the Medtronic pacemakers required a rare series

of events for a circuit error to occur. In the pacemaker’s case: “When programmed to a dual

chamber mode with atrial-sensing … a unique combination of events must take place while the

device is processing an ateril-sensor event. If this error occurs, the device will be unable to

provide pacing until a ventricular-sensor event (VS) is detected [22]”. To wit: the device had to

be in a certain mode, with a certain sensor running a process, and a rare sequence of events

24

occurring at that exact time, and it still wouldn’t show an issue unless there was also problems

with a ventricular-sensor or the patient also had ventricular pacing issues. This scenario shows

both the importance of, and complexity to, building a thorough testing process. While testing for

every potential hardware failure is impossible, devices should have as many checks and safety

features as possible. Hardware, software, and all the possible ways they interact must be tested as

fully as possible to ensure the patient’s safety and health.

The cost of this issue not being found before release was staggering. While the scope of

this issue only affected a small portion of the devices so far, which “occurred in three (3) devices

from a total of 156,957 devices sold worldwide [22],” a similar failure could still occur with the

rest of these devices. This meant a high risk for further injury and a potential for loss of life.

These devices were “distributed worldwide between 10 March 2017 and 7 January 2019 [22].”

This meant Medtronic had to go through a global suspension and recall process for the unused

device, and develop further processes for the safest way to adjust or replace the devices already

in use. To redistributing these recalled devices, they would need to develop a software update to

fix the firmware issue, test it, get regulatory approval, and finally update the devices before.

While an exact dollar amount was not mentioned in the report, the details included would

guarantee a hefty reduction in profits or overall loss for Medtronic.

Medtronic’s actions also show why the design and maintenance phases are as important,

if not more so, then the software development and testing phases. With both the Therac-25

radiotherapy machine (described in the prior case study) and Medtronic pacemakers had failures,

the quality control and handling of reported issues for Medtronic was far superior. Less than 2

thousandths of a percent of the pacemakers failed within the 2 years since their initial release.

Within those 2 years, despite only having 3 devices fail, Medtronic was able accurately find the

25

issue, work out an ideal solution, and develop a recommended process for handling already

installed pacemakers until the ideal solution could be fully developed and implemented. This was

in stark contrast to the Therac-25, who’s first response was equivalent to “that can’t happen”,

and lawsuits going into effect before any problem solving began. This shows that Medtronc’s

original design process was good enough to narrow down the issue once found, and the

maintenance phase good enough to both spot the problem early on and then fix it.

These events help to show the importance of the complete software engineering process

and requiring high standards for development in the medical field. Despite the critical nature of

these life-saving devices, “The FDA approved almost all those devices under a medium level of

regulatory controls (510(k) clearance).[21 pp.21]”. For Medtronic, a single point of failure in

development and testing caused a massive recall. However, their efforts in design, development,

and testing meant there were no larger scale issues and no loss of life.

26

REFERENCES

[1] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,” Computer,

vol. 26, no. 7, pp. 18–41, Jul. 1993

[2] [5]D. Gotterbarn, K. Miller and S. Rogerson, "Software Engineering Code of Ethics", 1997.

[Online]. Available: https://dl.acm.org/citation.cfm?id=265699. [Accessed: 13- Apr- 2019].

[3] "General Principles of Software Validation; Final Guidance for Industry and FDA Staff",

Fda.gov, 2002. [Online]. Available:

https://www.fda.gov/downloads/medicaldevices/.../ucm085371.pdf. [Accessed: 11- Apr- 2019].

[4] J. Poore and C. Trammell, "Application of Statistical Science to Testing and Evaluating

Software Intensive Systems," in Statistics, testing, and defense acquisition, Washington, D.C.:

National Academy Press, 1999, pp. 124-170.

[5] S. Prowell and J. Poore, "Sequence-based software specification of deterministic systems",

Software: Practice and Experience, vol. 28, no. 3, pp. 329-345, 1998. Available:

https://www.researchgate.net/publication/297407025_Sequence-

based_software_specification_of_deterministic_systems.

https://www.fda.gov/downloads/medicaldevices/.../ucm085371.pdf
https://www.researchgate.net/publication/297407025_Sequence-based_software_specification_of_deterministic_systems
https://www.researchgate.net/publication/297407025_Sequence-based_software_specification_of_deterministic_systems

27

[6] F. McCaffery, V. Casey, G. Coleman and M. Sivakumar, "Medical Device Software

Traceability", in Software and Systems Traceability, J. Huang, A. Zisman and O. Gotel, Ed.

London: Springer, 2012.

[7]https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/combined/hipaa-

simplification-201303.pdf. [Accessed: 11-Apr-2019]

[8] HHS Office of the Secretary,Office for Civil Rights and Ocr, “Summary of the HIPAA

Security Rule,” HHS.gov, 26-Jul-2013. [Online]. Available: https://www.hhs.gov/hipaa/for-

professionals/security/laws-regulations/index.html. [Accessed: 11-Apr-2019].

[9] HHS Office of the Secretary,Office for Civil Rights and Ocr, “Summary of the HIPAA

Privacy Rule,” HHS.gov, 26-Jul-2013. [Online]. Available: https://www.hhs.gov/hipaa/for-

professionals/privacy/laws-regulations/index.html. [Accessed: 11-Apr-2019].

[10]https://www.hhs.gov/sites/default/files/nist-csf-to-hipaa-security-rule-crosswalk-02-22-2016-

final.pdf [Accessed: 11-Apr-2019]

[11]https://www.govinfo.gov/content/pkg/FR-2013-01-25/pdf/2013-01073.pdf. [Accessed: 11-

Apr-2019].

[12] Majchrowski, B. (2010). Medical software's increasing impact on healthcare and technology

management. Biomedical Instrumentation & Technology, 44(1), 70-74. [Online]. Available:

https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/combined/hipaa-simplification-201303.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/combined/hipaa-simplification-201303.pdf
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/sites/default/files/nist-csf-to-hipaa-security-rule-crosswalk-02-22-2016-final.pdf
https://www.hhs.gov/sites/default/files/nist-csf-to-hipaa-security-rule-crosswalk-02-22-2016-final.pdf
https://www.govinfo.gov/content/pkg/FR-2013-01-25/pdf/2013-01073.pdf

28

http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-

com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485. [Accessed: 07-Apr-2019].

[13]Majchrowski, B. (2010). Medical software's increasing impact on healthcare and technology

management. Biomedical Instrumentation & Technology, 44(1), 70-74. [Online]. Available:

http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-

com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485. [Accessed: 07-Apr-2019].

[14] R. M. Abbas, N. Carroll, I. Richardson, and S. Beecham, “The Need for Trustworthiness

Models in Healthcare Software Solutions,” Proceedings of the 10th International Joint

Conference on Biomedical Engineering Systems and Technologies, pp. 451–455, 2017. [Online].

Available: doi: 10.5220/0006249904510456. [Accessed: 10-Apr-2019].

[15] W. Ke and Z. Liu, "Software Engineering in Public Health: Opportunities and Challenges,"

2012 International Conference on Computer Distributed Control and Intelligent Environmental

Monitoring, Hunan, 2012, pp. 630-637. [Online]. Available: doi: 10.1109/CDCIEM.2012.155

[16] I. Sommerville, Software Engineering, 5th ed. Old Tappan: Pearson Education UK, 2006, p.

73.

[17] L. K. Johannessen and G. Ellingsen, “Integration and Generification—Agile Software

Development in the Healthcare Market,” Computer Supported Cooperative Work (CSCW), vol.

http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485
http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485
http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485
http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-com.ezproxy1.lib.asu.edu/docview/743281452?accountid=4485

29

18, no. 5-6, pp. 607–634, 2009. [Online]. Available: https://link-springer-

com.ezproxy1.lib.asu.edu/article/10.1007/s10606-009-9097-8. [Accessed Mar. 30, 2019].

[18] M. Mcmurtrey, “A Case Study of the Application of the Systems Development Life Cycle

(SDLC) in 21st Century Health Care: Something Old, Something New?,” Journal of the

Southern Association for Information Systems, vol. 1, no. 1, 2013. [Online]. Available:

https://quod.lib.umich.edu/j/jsais/11880084.0001.103?view=text;rgn=main. [Accessed Mar. 30,

2019].

[19] A. M. Fernandes, A. Pai, and L. M. M. Colaco, “Secure SDLC for IoT Based Health

Monitor,” 2018 Second International Conference on Electronics, Communication and Aerospace

Technology (ICECA), 2018.

[20] K. N. Manjunath, J. Jagadeesh, and M. Yogeesh, “Achieving quality product in a long-term

software product development in healthcare application using Lean and Agile principles:

Software engineering and software development,” 2013 International Mutli-Conference on

Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013.

[Online]. Available: https://arizona-

asu.userservices.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package

_service_id=16904600430003841&institutionId=3841&customerId=3840. [Accessed Mar. 30,

2019].

https://link-springer-com.ezproxy1.lib.asu.edu/article/10.1007/s10606-009-9097-8
https://link-springer-com.ezproxy1.lib.asu.edu/article/10.1007/s10606-009-9097-8
https://quod.lib.umich.edu/j/jsais/11880084.0001.103?view=text;rgn=main
https://arizona-asu.userservices.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=16904600430003841&institutionId=3841&customerId=3840
https://arizona-asu.userservices.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=16904600430003841&institutionId=3841&customerId=3840
https://arizona-asu.userservices.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=16904600430003841&institutionId=3841&customerId=3840

30

[21] H. Alemzadeh, R. K. Iyer, Z. Kalbarczyk, and J. Raman, “Analysis of Safety-Critical

Computer Failures in Medical Devices,” IEEE Security & Privacy, vol. 11, no. 4, pp. 14–26,

2013.

[22] Medtronic and Chris Harrold, “Dual Chamber Pacemakers: Urgent Medical Device Recall,”

URGENT MEDICAL DEVICE RECALL, Jan-2019. [Online]. Available:

https://www.medtronic.com/us-en/healthcare-professionals/products/product-performance/dual-

chamber-pacemaker-recall.html. [Accessed: 07-Apr-2019].

https://www.medtronic.com/us-en/healthcare-professionals/products/product-performance/dual-chamber-pacemaker-recall.html
https://www.medtronic.com/us-en/healthcare-professionals/products/product-performance/dual-chamber-pacemaker-recall.html

	SER416L_gsc_course_proposal_cover_9-19
	GENERAL STUDIES COURSE PROPOSAL COVER FORM

	SER416L_checklist_l_2014_2015
	SER416-CatalogDescription
	SER416.Syllabus.spring19
	SER 416 Project and Process Management, Spring 2019
	Catalog Description
	1. Contact Information
	2. Office Hours
	3. Course Objectives and Expected Learning Outcomes
	4. Grading Policies
	Grade Appeals: Students have the right to appeal a grade in writing. Submit your typed appeal (email is fine) with the graded lab or exam, stating the reason for the appeal. All appeals must be turned in no later than one week after the grade has been...
	5. Absence and Make-Up Policies
	6. Readings, Special Materials, and Required Activities
	7. Classroom Behavior
	9. Disability Accommodations
	10. Additional Notices
	11. Sexual Discrimination
	ADDITIONAL COURSE INFORMATION
	Prerequisites
	Additional Course Description

	TableOfContents
	SER416.ProjectDescription
	Lab1_QM_DefectTracking
	Lab: Quality Management and Defect Tracking
	Instructions:
	General Grading Rubrics: (C4
	Activity 1: Quality Management Standards (12 points)
	Activity 2: Defect Tracking (22 points)
	Activity 3 (6 points, INDIVIDUAL):
	Activity 4 Reflection (10 points, INDIVIDUAL):

	Lab2_DefectEstimation19
	Lab3_SPI
	Lab: Software Process Improvement
	Instructions: Note: Please do Activity 3.1 in class on February 13th!
	General Grading Rubrics: (C4
	Activity 1: Software Process Improvement Standards (11 points)
	Activity 2: Software Process Improvement Examples (12 points)
	Activity 4 (5 points, INDIVIDUAL):
	Activity 5 Reflection (10 points, INDIVIDUAL):

	Lab4_RiskMgmt
	SoftwareEnterpriseOverview.0917
	416 Project Paper - Software Security
	Introduction
	Technical Summary
	Case Study: A Software Security Marketplace Case Study (September 2011)
	Standards in Security
	A Brief History
	TCSEC: The Orange Book
	ISO 15408: Common Criteria

	Case Study: Facebook Security Breach (September 2018)
	Current and Future Impact Discussion
	Impact on the SDLC
	Conclusion
	Bibliography

	Scaled_Agile_Essay
	INTRODUCTION
	Brief History of Development Methodologies
	Agile Frameworks
	Scaling Agile

	TECHNICAL SUMMARY
	Technical Summary: DAD
	Technical Summary: SAFe
	Technical Summary: LeSS

	RELEVANT STANDARDS
	ISO/IEC/IEEE Standards
	Standards of DAD

	IMPACT ON Software Development Life Cycle
	SDLC: DAD
	SDLC: SAFe
	SDLC: LeSS

	CASE STUDIES
	Case Study: DAD
	Case Study: SAFe

	CURRENT & FUTURE IMPACT
	CONCLUSION
	BIBLIOGRAPHY

	team404.ProjectReport
	INTRODUCTION
	TECHNICAL SUMMARY
	RELEVANT STANDARDS
	CURRENT AND FUTURE IMPACT
	SOFTWARE DEVELOPMENT LIFECYCLE (SDLC) IMPACT
	CASE STUDIES
	The Therac-25 Failure
	Medtronic Pacemaker Recall

	REFERENCES

	Lab3_KEY_SPI.pdf
	Lab: Software Process Improvement
	Instructions: Note: Please do Activity 3.1 in class on February 13th!
	General Grading Rubrics:
	Activity 1: Software Process Improvement Standards (11 points)
	Activity 2: Software Process Improvement Examples (12 points)
	Activity 4 (5 points, INDIVIDUAL):
	Activity 5 Reflection (10 points, INDIVIDUAL):

	Lab1_KEY_QM_DefectTracking.pdf
	Lab: Quality Management and Defect Tracking
	Instructions:
	General Grading Rubrics:
	Activity 1: Quality Management Standards (12 points)
	Activity 2: Defect Tracking (22 points)
	Activity 3 (6 points, INDIVIDUAL):
	Activity 4 Reflection (10 points, INDIVIDUAL):

