Sample Academic Plan Programs

New Academic Program Request

University: Arizona State University

<table>
<thead>
<tr>
<th>Name of Proposed Academic Program:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science in Clinical and Translational Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Department:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edson College of Nursing and Health Innovation and College of Health Solutions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geographic Site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown Phoenix Campus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Modality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion and online</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Credit Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Inception Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2021</td>
</tr>
</tbody>
</table>

Brief Program Description:

The Master of Science in Clinical and Translational Science will provide education for practicing clinicians and health leaders to advance clinical and translational research. The Edson College of Nursing and Health Innovation and the College of Health Solutions will jointly advance education, collaboration, research, and leadership in clinical and translational science through existing strengths and expertise. This degree will increase the number, quality and diversity of clinical and translational researchers, promote research and intellectual exchange among diverse professionals, and advance health care research priorities. The MS Clinical and Translational Science supports ASU’s mission of advancing research and assuming fundamental responsibility for the overall health of the communities it serves through graduate-level education of health care professionals to design, implement, evaluate, and disseminate research to improve health outcomes of individuals, systems, and populations.

Learning Outcomes and Assessment Plan:

Learning Outcome 1: Graduates will be able to employ principles of scientific inquiry to identify and evaluate gaps in current literature and develop research questions that address a real-world clinical problem.

- **Concepts:** Principles of scientific inquiry, strategies to identify and evaluate studies in a specialized literature.
- **Competencies:** Ability to perform a literature search, summarize literature findings, identify gaps in literature to solve a real-world clinical practice or healthcare problem.
- **Assessment Method:** Written Assignment 1: Course MSCT 52X Students in the MS Clinical and Translational Science will demonstrate mastery of the principles of scientific inquiry by completing an exhaustive literature search to identify gaps in actual clinical practice or healthcare settings through a case study assignment. Written Assignment 2: Course MSCT 52X. Students will demonstrate the application of findings of their literature review to identify gaps in the literature that can improve clinical practice or healthcare outcomes.
- **Measure:** Rubrics will be utilized to evaluate students’ ability to demonstrate the competencies identified to meet Outcome 1. Annual review of outcomes will be completed and utilized for continuous course improvement. The curriculum will be refined based on measures of the student’s ability to apply their findings and develop a literature review that describes solving a real-world clinical practice or healthcare problem.

Learning Outcome 2: Graduates will be able to apply clinical research methodology to design and implement an intervention study that addresses a gap in the literature to address a real-world clinical practice or healthcare problem.

- **Concepts:** Clinical research methodology, research study design.
- **Competencies:** Ability to design an intervention study protocol.
- **Assessment Method:** Written Assignment 1 in Course MSCT 53X. Students in the MS Clinical and Translational Research degree will demonstrate the ability to write and present their research questions, data collection and analysis strategies. Written Assignment 2 in MSCT 53X. Students in the MS Clinical and Translational Science degree will demonstrate the ability to present their research questions, data collection and analysis methodology for an intervention project that addresses a clinical problem in a specific healthcare setting.
- **Measure:** Rubrics will be utilized to evaluate students’ ability to demonstrate the competencies identified to meet Outcome 2. Annual review of outcomes will be completed and utilized for continuous course improvement. The curriculum will be refined based on measures of the student’s ability to apply clinical research methods to address a real-world clinical problem.

Learning Outcome 3: Graduates will be able to disseminate research findings in clinical and translational science through a peer-reviewed publication.

- **Concepts:** Writing research findings for publication and dissemination purposes.
- **Competencies:** Ability to prepare a manuscript for an identified peer-reviewed journal that aligns with their area of research in clinical and translational science.
- **Assessment Method:** Written Assignment 1 in Course MSCT 54X. Students in the MS Clinical and Translational Research degree will demonstrate the ability to identify an appropriate peer-reviewed journal that aligns with their research project. Written Assignment 2 in course MSCT 55X. Students in the MS Clinical and Translational Research degree will demonstrate the ability to write a manuscript that meets the appropriate criteria for a peer-reviewed publication.
- **Measure:** Rubrics will be utilized to evaluate students’ ability to demonstrate the competencies identified to meet Outcome 3. Annual review of outcomes will be completed and utilized for continuous course improvement.
The curriculum will be refined based on measures of the student's ability to prepare a manuscript for an identified peer-reviewed journal.

Projected Enrollment for the First Three Years:

1st Year: 15
2nd Year: 30
3rd Year: 45

Evidence of Market Demand:

Gray Associates' Program Evaluation System provides an overall score for a specific program of interest based on individual scores within Student Demand, Employment Opportunities, Strategic Fit, and Competitive Intensity categories. Gray's robust database assembles information from various market drivers indicative of successful campus programs including student inquiries, applications, demographics, completions, job openings, job postings, and placement rates from sources including IPEDS, BLS/O*NET, Department of Education, Burning Glass, U.S. Census, Skills Engine, Google, and the National Higher Education Benchmarking Institute. The database was custom built for the College of Health Solutions to include up to ten markets including the Arizona and national markets. Emsi Analytics provides additional market analyses indicating high demand for medical scientists. The market results from Gray Associates, Emsi, the U.S. Bureau of Labor and Statistics (BLS), IPEDS, and the U.S. Census Bureau’s American Community Survey are provided below and indicate positive growth opportunities for the Master of Science in Clinical and Translational Science.

According to IPEDS, there were a total of 726 completions at 50 campuses of which 86% were at the master's degree level in 2017. According to Emsi, there were 25,953 total job postings between January 2019 to June 2019 for medical scientists with average monthly hires being 3,964 during that same period of time (Medical scientists “conduct research dealing with the understanding of human diseases and the improvement of human health”) (O*Net). Emsi projects a +19.54% change in occupations (+22,778 new jobs) for medical scientists between 2017 and 2024. The U.S. Bureau of Labor and Statistics (BLS) reports the current employment for medical scientists to be 1,377 which is a compound annual growth rate of 1.8% for year-over year employment, 6.7% for 3-year historic growth, and 5.8% for 5-year historic growth. The 10-Year forecast for compound annual growth rate is 1.2%.

According to the American Community Survey administered by the U.S. Census Bureau, wages range between $34,969 (age < 30) to $64,720 (age 30-60). Emsi reports medical scientists have median hourly earnings of $40.81/hr.

The data demonstrates strong growth for medical scientists in the field of clinical and translational science.

Similar Programs Offered at Arizona Public Universities:

The University of Arizona offers a Clinical Translational Sciences (CTS) degree that targets students with a clinical or basic science background who will participate in a specific laboratory or clinical research project in the laboratory/clinic of a CTS faculty member.
The proposed degree from ASU is unique because of its applied emphasis and strong mentoring component. Specifically, students in the MS in Clinical and Translational Science at ASU will be prepared and mentored to complete a research study in their current practice setting. The research project will be completed in the student’s practice or organizational environment, utilizing data from their own practice to identify a gap, design and implement a research study, evaluate and disseminate outcomes of the intervention. This program feature will afford students significant opportunities to apply knowledge and skills in an authentic professional context, thus enhancing the experiential value of the degree. In addition, faculty mentors and thesis chairs will come from a variety of disciplines represented by the sponsoring colleges, based on students’ areas of research, including but not limited to the Science of Health Care Delivery, Nursing, Biomedical Informatics, Population Health, Integrative Behavioral Health, and Clinical Health Innovation.

The MS in Clinical and Translational Science aims to attract current professional practitioners who identify gaps in the literature to prepare them to design, implement, measure, and disseminate an intervention that addresses a real-world problem in their practice or organization. An additional distinctive feature of this MS degree is that it will be offered in an online format.

New Resources Required? (i.e. faculty and administrative positions; infrastructure, etc.):

No new resources are required to implement this degree. The College of Health Solutions and Edson College of Nursing and Health Innovation have current faculty who are qualified and available to teach the majority of courses in the MS in Clinical and Translational Science. Their teaching assignments will be reallocated to teach the courses in this degree. An existing faculty member will serve as the degree coordinator. Existing support staff and advising staff will ensure student success. As enrollment increases and faculty with specific teaching expertise is required, we will supplement current faculty with qualified faculty associates and/or instructors to deliver this degree.

Program Fee/Differentiated Tuition Required? YES ☒ NO ☐

Estimated Amount: $350 per credit hour

Program Fee Justification:

Students in the MS in Clinical and Translational Science will require lower faculty-to-student ratio to guide their intervention research from proposal, through design, implementation, evaluation and dissemination.

Specialized Accreditation? YES ☐ NO ☒

Accreditor: N/A
New Academic Program Request

University: Arizona State University

<table>
<thead>
<tr>
<th>Name of Proposed Academic Program:</th>
<th>Master of Science in Complex Systems Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Department:</td>
<td>School of Life Sciences, The College of Liberal Arts and Sciences</td>
</tr>
<tr>
<td>Geographic Site:</td>
<td>Tempe Campus</td>
</tr>
<tr>
<td>Instructional Modality:</td>
<td>Immersion and online</td>
</tr>
<tr>
<td>Total Credit Hours:</td>
<td>30</td>
</tr>
<tr>
<td>Proposed Inception Term:</td>
<td>Spring 2021</td>
</tr>
</tbody>
</table>

Brief Program Description:

The interdisciplinary Master of Science in Complex Systems Science will develop skills in theoretical foundations, modeling, problem solving, critical thinking, and the importance of direct experience through research or related activities in the context of complex systems. This is a collaborative degree in partnership with the Santa Fe Institute, which is a world leader in complex systems science with over 30 years of research in complex systems. Partnering with this institute will enhance the student experience and ensure that the program has the most up to date knowledge and expertise in the field. The program will focus on the general theoretical foundations, modeling methods and a broad overview of application domains. Complex systems are at the core of all real-world challenges ranging from health, sustainability, engineering, economics, urban and social systems and basic sciences. Expertise in complex systems science will allow graduates to contribute to solutions in a vast number of areas thus fitting with ASU’s mission to advance research and discovery of public value; and assuming fundamental responsibility for the economic, social, cultural and overall health of the communities it serves.

The Global Biosocial Complexity Initiative and its 100+ participating ASU faculty across more than 10 academic units and the Santa Fe Institute with its resident and external faculty represent one of the world’s leading concentration of researchers in complex systems science. Leveraging ASU’s pioneering role in online education, this group of faculty is able to offer a cutting edge online degree program that is unique in both its scope and level of expertise. By offering the degree through the EdPlus platform students world-wide can take advantage of the expertise of both groups of researchers and are provided with a unique combination of theoretical foundations and practical applications in complex systems science.
Offering a joint degree with the Santa Fe Institute through ASU is also an innovative approach to Master level education that builds on ASU’s innovation expertise and reflects the realities of an interconnected world that requires to be highly dynamic and adaptive.

New faculty are not needed to deliver this curriculum. Based on existing hiring plans and initiatives, several new faculty who will be hired have the potential to contribute to this program in the future. The Global Biosocial Complexity Initiative already coordinates the graduate faculty in complex adaptive systems and the existing concentrations on this subject in a number of Ph.D. programs as well as the complex adaptive systems certificate. The Global Biosocial Complexity Initiative has a functioning business office (6 people) with one designated staff member coordinating our academic offerings. The School of Life Sciences has experience in managing online degrees as well as coordinating degrees developed in partnership with outside organizations (Biomimicry).

Learning Outcomes and Assessment Plan:

Learning Outcome 1: Graduates of the program will be able to evaluate the basic principles of complex systems science and apply those to a number or real-world cases from different areas, including environmental sciences, economics, sustainability and health in order to solve problems.

- **Concepts:** Core features of complex systems; research design, including data collection and analysis applied to real world cases as complex systems problems.
- **Competencies:** Students will demonstrate competence in comprehending and critically evaluating the core principles of complex system science and the ability to apply these theoretical concepts to conduct research on real world cases.
- **Assessment Methods:** Competencies will be tested in written assignments throughout the degree and it will be the basis for assessment of the final research project, which will be an application of complex systems science approaches to a real-world case taken from any number of application areas and matched to the student’s interest and goals. Besides formulating a research question, students will be able to conduct preliminary research towards addressing the problem they identified. This will include a comprehensive literature review, as well as data gathering and analysis. They will demonstrate the ability of conducting a critical evaluation of the literature and independent research.
- **Measures:** Assessed by the final project and milestones laid out in the program-long student portfolio. The portfolio will include a rubric of milestones that will also be used to continuously improve the program and help to identify resources needed for students to succeed.

Learning Outcome 2: Graduates of the program will be familiar with the essential methodological and modeling tools in complex systems science and demonstrate the ability to apply those to novel data sets.

- **Concepts:** Analytical and modeling techniques; adaptation of standard analytical and modeling techniques to a specific problem.
- **Competencies:** Students will demonstrate the ability to assess critically the assumptions and limitations of techniques and modeling approaches. Students will understand and apply core modeling techniques of complex systems science and be able to select appropriate techniques for particular empirical cases. This includes competency in dynamic systems modeling, agent based modeling and statistics.
Learning Outcome 3: Graduates of the program will be able to identify and analyze concrete examples of complex systems and compare those to other such examples in order to identify similarities and differences between those systems.

- **Concepts:** Characteristics and criteria of complex systems. Data structures needed to identify complex systems. Questions that can be examined using complex systems concepts and methods. Research methods to study complex systems.
- **Competencies:** Students will demonstrate competence in comparing instances of complex systems to each other in order to detect common principles and structures. Students will independently conduct a study on a complex system.
- **Assessment Methods:** The ability to comprehend these concepts will be tested in all relevant courses within the degree and also in the development of the framework for the final project. Students will have to defend their research question, corresponding selection of methods and be able to critically assess the results of their work and place those into the larger context. Students will also demonstrate their ability to specifically adapt methods to fit their research question and data structures.
- **Measures:** Assessed by the final project and milestones laid out in the program-long student portfolio. The portfolio will include a rubric of milestones that will also be used to continuously improve the program and help to identify resources needed for students to succeed.

Projected Enrollment for the First Three Years:

1st Year: 20
2nd Year: 50
3rd Year: 80

Evidence of Market Demand:

Complex systems science is an important part of solutions in such areas as sustainability, finance, a large number of the social sciences, the bio-medical sciences and computer science. It is foundational for understanding risk and security. Career options include, but are not limited to (15-0000) Computer and Mathematical Occupations; projected growth rate in employment for the 2018-2028 period is 12.7%; and (19-0000) Life, Physical and Social Science Occupations; projected growth rate in employment 2018 to 2028 is 7.4% (source Bureau of Labor Statistics (www.bls.gov)). Furthermore, the report "The New Foundational Skills for the Digital Economy: Developing the Professionals of the Future" by BurningGlass Technologies (https://www.burning-glass.com/wp-
content/uploads/New_Foundational_Skills.pdf) identifies many of the skills developed as part of this degree as foundational.

The career options for graduates of this degree are therefore manifold. For instance, the degree will better qualify students for a number of PhD programs at ASU. As there are no complex systems undergraduate degrees, it provides necessary qualifications for more advanced studies. In addition, the degree constitutes an added qualification for a huge number of jobs in the private and public sectors in all the areas listed above. Evidence for this is the huge demand for executive education in this area by some of the leading companies (many are members of the Santa Fe Institute Action network and have expressed interest in such an online degree for their employees). Given these options and trends and the tremendous growth in these sectors of the economy, we project outstanding career options for graduates.

The need to better understand complexity is widely recognized. The Economist in an editorial in 2004 (28th October) and in many articles subsequently published called for the need to “keep it simple” in light of ever-increasing complexity and identified complexity science as the way to advance that vision. Similarly, the Journal of the American Medical Association called for the urgent need to understand healthcare as a complex system (doi:10.1001/jama.2012.7551), and Science Magazine identified expertise in networks, especially complex networks as a major career option (https://www.sciencemag.org/careers/2009/07/tangled-webs-careers-network-science). Yet, globally only a handful of complex systems degree programs/concentrations exist, mostly at the PhD level and all are more narrowly focused. At ASU, we have avoided this narrow specialization by offering a concentration in a number of PhD degrees. Both our experience and the experience of our colleagues highlight the need for a broad, interdisciplinary MS program ahead of the PhD.

Similar Programs Offered at Arizona Public Universities:

There are no comparable degrees offered at any universities in Arizona.

New Resources Required? (i.e. faculty and administrative positions; infrastructure, etc.):

New faculty are not required to deliver this curriculum. Based on existing hiring plans and initiatives, several new faculty who will be hired have the potential to contribute to this program in the future. The Global Biosocial Complexity Initiative has a functioning business office of six staff members, with one designated staff member coordinating our academic offerings.

Program Fee/Differentiated Tuition Required? YES ☒ NO ☐

Estimated Amount: $475 per credit hour

Program Fee Justification:

The Complex Systems Science MS is a collaborative degree between ASU and the Santa Fe Institute. The Santa Fe Institute is the world leader in complex systems science and an institutional partner of ASU. An agreement covers the modalities of the collaborative degree
and it specifies a program fee. The involvement of the Santa Fe Institute greatly enhances the
degree and its marketability. A program fee would cover the following additional costs:

1. Development of new materials covering the most up to date knowledge in complex
 systems science by Santa Fe Institute faculty that is refreshed annually. ASU and the
 students in the program will have unique access to these Santa Fe Institute materials.

2. Involvement of Santa Fe Institute faculty in all courses. ASU faculty will be co-instructors,
 but Santa Fe Institute faculty will contribute segments in all courses. The ASU-Santa Fe
 Institute agreement states that a program fee would be split between ASU academic units
 and the Santa Fe Institute to cover these costs.

3. As a graduate degree program, the MS curriculum has research and applied project
 components. These applied projects are especially complex and labor intensive and require
 the support of teaching assistants to set up, working closely with faculty. The program fee is
 designed to cover these costs, which directly benefit the students in the MS program.

<table>
<thead>
<tr>
<th>Specialized Accreditation?</th>
<th>YES ☐ NO ☒</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditor:</td>
<td>N/A</td>
</tr>
</tbody>
</table>
New Academic Program Request

University: Arizona State University

<table>
<thead>
<tr>
<th>Name of Proposed Academic Program:</th>
<th>Bachelor of Arts in Digital Media Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Department:</td>
<td>Walter Cronkite School of Journalism and Mass Communication</td>
</tr>
<tr>
<td>Geographic Site:</td>
<td>Downtown Phoenix Campus</td>
</tr>
<tr>
<td>Instructional Modality:</td>
<td>Immersion and online</td>
</tr>
<tr>
<td>Total Credit Hours:</td>
<td>120</td>
</tr>
<tr>
<td>Proposed Inception Term:</td>
<td>Fall 2020</td>
</tr>
</tbody>
</table>
| **Brief Program Description:** | The immersive nature of digital media has opened immense opportunities for positive change through expanded access to information about health care, government, education, conflict, sustainability and many other topics. But it has also intensified the spread of misinformation, which now threatens our communities and our democracy. The Aspen Institute and the Knight Commission on Trust, Media and Democracy's recent report Crisis in Democracy: Renewing Trust in America, called for a national effort to "provide students of all ages with basic civic education and the skills to navigate online safely and responsibly."

This new bachelor's degree program establishes ASU as a central leader in addressing this urgent challenge. The program is rooted in the traditions of the liberal arts, with deep focus on critical thinking, communication, ethical decision making, global awareness and problem solving. It teaches students to apply these skills in the context of digital media, understanding how information and technology affect our personal, social and professional interactions.

Graduates of the program will be able to use cutting-edge tools and tactics to analyze the context of the media we consume. They will be able to verify and interpret information to make decisions that improve their own lives and that benefit our larger society.

Nowhere are these digital media literacy skills more important than in the workplace. Organizations of all sizes, public and private, are learning to cope with unprecedented change in how we interact with and use information. This program will prepare students to be at the forefront of important strategic and ethical issues related to digital media, including automation, verification, security and privacy. |
This program aligns with ASU Design Aspirations including transforming society, fusing intellectual disciplines, being socially embedded, engaging globally and enabling student success. The New American University will be a leader in bringing 21st-century literacies to the people who need them.

Learning Outcomes and Assessment Plan:

Learning Outcome 1: Graduates of the program will demonstrate that they can critically evaluate the accuracy and credibility of digital media sources and information.

- **Concepts:** Scientific method; critical thinking; data literacy, statistical significance and quantitative reasoning; social and behavioral science research methods; intellectual property and attribution of external sources; differentiating fact from opinion and misinformation; techniques of persuasion; the sources of misinformation; the economic and political drivers of misinformation campaigns and how misinformation spreads online.

- **Competencies:** Students will apply skills in statistical analysis, image verification, contextual evaluation, inference, communication and critical thinking to determine the credibility of information delivered through digital media and to create their own content for an online audience.

- **Assessment Methods:** In MCO 426: Digital Media Literacy II, students will create a portfolio of digital content, focused on a niche topic that evaluates, describes and attributes information from external sources. Outside industry evaluators will assess a sample of that work using a rubric of professional standards. In MCO 425: Digital Media Literacy I, students will complete an exam that presents a series of online stories. For each set of stories, students will have to identify which are verifiable news stories, which are fake news stories and which are opinion or satire. In addition, in Cronkite course evaluations, students self-report the extent to which the course taught them how to conduct research and evaluation information; write correctly and clearly; critically evaluate work for accuracy, fairness, clarity and grammatical correctness; and apply basic numerical and statistical concepts.

- **Measures:** The curriculum will be refined based on the assessment of student work in MCO 425 and MCO 426, feedback from industry professionals and indirect measures via student course evaluations.

Learning Outcome 2: Graduates will demonstrate the ability to participate in real-world digital media networks securely and ethically.

- **Concepts:** Risk assessment; privacy; how commercial interests drive data collection by corporations such as Google and Facebook; cybersecurity; national and international intellectual property law; personal ethics and responsibilities; corporate ethics and responsibilities; techniques of civil discourse; First Amendment right to freedom of expression; how search engine and social network algorithms work; economics of online advertising and commerce; intercultural understanding and inclusion, and the sociopolitical influences of digital media.

- **Competencies:** Students will apply skills in writing, quantitative analysis, photo editing, attribution of sources and production of graphics in creating secure digital content and ethical guidelines for digital communities. Writing about a niche topic
against regular deadlines will require students to apply skills in time management and problem solving.

- **Assessment Methods:** In MCO 426: Digital Media Literacy II, students create a personal website using appropriate technology. They must develop a code of ethics and guidelines for civil discourse within their online space and apply them in writing blog posts about a niche topic. Outside industry professionals will evaluate that written content and the code of ethics against a rubric of professional standards. In addition, in Cronkite course evaluations, students self-report the extent to which the course taught them how to understand and apply ethical principles; understand concepts and apply theories in the presentation of images and information; apply appropriate communications tools and technologies; and think critically, creatively and independently.

- **Measures:** The curriculum will be refined based on feedback from portfolio reviews by industry professionals and indirect measures via student course evaluation feedback.

Learning Outcome 3: Graduates will apply their understanding of how information ecosystems work to assist others in learning how to participate in real-world digital media networks securely and ethically.

- **Concepts:** How communication networks operate; the history and evolution of the internet; centralized and decentralized control of the digital media ecosystem; threat modeling; the economic, social and political factors that influence what consumers see online; persuasive rhetoric and techniques for reaching diverse audiences.

- **Competencies:** Students apply skills in written and oral communication, critical thinking and problem solving, as well as global, historical and cultural awareness to teach other people how information ecosystems work and how best to navigate them.

- **Assessment Methods:** In MCO 425: Digital Media Literacy I, students will create a public service announcement, including oral communication and visual images, to educate an audience on how to best behave online. Industry professionals will evaluate a sample of these submissions using a rubric professional standards for accuracy and persuasive messaging. In MCO 494: Freedom of Expression in the 21st Century, students will write a set of guidelines for personal digital privacy and security. Their guidelines will be scored against a standardized rubric of best practices. In addition, in Cronkite course evaluations, students self-report the extent to which courses taught them to understand the history and role of professionals and institutions in shaping communications, and to understand the diversity of peoples and cultures and the impact of mass communication in a global society.

- **Measures:** The curriculum will be refined based on feedback from portfolio reviews by industry professionals and indirect measures via student course evaluation feedback.

Learning Outcome 4: Graduates will demonstrate that they can explain the role of communication in a free society.

- **Concepts:** The American institutions of the U.S. Constitution and Bill of Rights; the role of freedom of expression throughout U.S. history; principles and institutions of American democracy; freedom of expression through literature and fine arts; practices of civic engagement; the role of the internet in empowering individual expression,
inclusion and distribution of diverse perspectives; global threats to free expression, and differences between communication channels.

- **Competencies:** Graduates will use written and oral communication to apply understanding of these concepts in explaining the role of communication in a free society.

- **Assessment methods:** In MCO 494: Freedom of Expression in the 21st Century and MCO 425: Digital Media Literacy I, relevant assignments are scored using a standardized rubric for clarity of written and oral communication an accuracy and complexity of explanations. In addition, in Cronkite course evaluations, students self-report the extent to which courses taught them to understand and apply the principles and laws of freedom of speech and press.

- **Measures:** The curriculum will be refined based on scoring of student work against standardized, professional rubrics and indirect measures via student course evaluation feedback.

Projected Enrollment for the First Three Years:

1. **1st Year:** 50
2. **2nd Year:** 150
3. **3rd Year:** 300

Evidence of Market Demand:

Employers in virtually every industry are grappling with how to leverage digital media to better inform consumers while combating misinformation. The skills students will develop in this program will prepare them for careers in a variety of fields, including as media and communication workers, marketing specialists, and public relations and fundraising managers—all positions the U.S. Department of Labor identifies as having “bright outlooks.”

Emsi Analyst reports an average of 34,464 monthly job postings for public relations specialists, with approximately 2 percent growth in the past year. Digital media literacy skills will set graduates apart from their peers in competition for these jobs, as employers look for candidates with deep understanding of how the public perceives and evaluates media in order to effectively communicate messages for their brands.

Technology companies including Google, Apple, Microsoft and Facebook are among those that are making sizable investments to counter misinformation and improve digital literacy skills. When announcing a recent initiative, Apple CEO Tim Cook said, "News literacy is vital to sustaining a free press and thriving democracy, and we are proud to be collaborating with organizations on the front lines of this effort."

Similar Programs Offered at Arizona Public Universities:

- **University of Arizona:**
 - BA in Journalism - Digital Journalism emphasis
- **Northern Arizona University:**
 - English - Rhetoric, Writing and Digital Media Studies
ASU’s proposed program will focus on digital media analysis and graduates will assist others in learning how to participate in real-world digital media networks.

New Resources Required? (i.e. faculty and administrative positions; infrastructure, etc.):

This proposal leverages existing Cronkite School offerings, reorganized and delivered in this new degree program. All but one of the required courses are already being offered by Cronkite faculty as required or elective courses for other Cronkite degree programs. One faculty member will work with existing instructional design support to develop the new class, which will be available as an elective for all ASU students. The school expects this course to draw broad enrollment, which will more than cover the cost of development and delivery. The Cronkite School has recently expanded its student services team to support a rapidly growing student population. The school is confident they can handle first-year enrollment in the new program and will expand as needed using revenue from enrollment.

<table>
<thead>
<tr>
<th>Program Fee/Differentiated Tuition Required?</th>
<th>YES ☒</th>
<th>NO ☐</th>
</tr>
</thead>
</table>

Estimated Amount: $525 (resident); $900 (nonresident) per semester

Program Fee Justification:

The fee for undergraduate programs was changed last year and replaced previously approved undergraduate immersion program fees and differential tuition and applies to all undergraduate programs in the particular college, school or division.

<table>
<thead>
<tr>
<th>Specialized Accreditation?</th>
<th>YES ☐</th>
<th>NO ☒</th>
</tr>
</thead>
</table>

Accreditor: None